Bac 2011 ES Maths obligatoire Corrige

icon

4

pages

icon

Français

icon

Documents

2013

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

4

pages

icon

Français

icon

Documents

2013

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Correction du bac ES Juin 2011 ( obligatoire ) Exercice 1 : 1. a) 2,89 12 102,59 67,91 67,91 84 b)  0,19  19% 84 2.
Voir icon arrow

Publié par

Publié le

18 décembre 2013

Langue

Français

Exercice 1 :

1.

2. a)

xi
zi= lnyi

b)

c)

3.

a)

b)

1
4,608

2
4,594

Correction du bac ES Juin 2011 ( obligatoire )

3
4,517

4
4,494

5
4,473

Premier ajustement : réduction de 19 % ( cf question 1b)

Deuxième ajustement :

Estimation de l’ indice de frquence en 2012:

Pourcentage d’ volution entre 2007 et 2012:

6
4,447

7
4,431

8
4,381

9
4,331

On ne peut donc pas prvoir d’ atteindre une rduction de 25 % selon les 2 ajustements prcdents.

Exercice 2 :

F

C 0,12

0,2

F 0,8

F 0,08

C 0,88

F 0,92

2. a) 0,12*0,2 = 0,024 = 2,4 %

b) 0,12*0,2 + 0,88*0,08 = 0,0944 = 9,44 %

c) 0,12*0,0944 = 0,011328

Or 0,011328 est différent de 0,024 donc les évènements ne sont pas indépendants.

3. 0,88*0,92 = 0,8096.

Il y a donc 80, 96 % des vtements qui ne prsentent aucun dfaut. L’ affirmation n’ est donc pas

correcte.

4. Les 3 choix sont indépendants. On retrouve donc la loi binomiale.
0,8096*0,8096*0,8096 = 0,80963=0,531

La probabilit qu’ aucun des 3 vtements ne pde défaut est donc 53,1 %résente

Exercice 3 :

1. c)

2. b)

3. b)

4. a)

Exercice 4 :

a)

Réponse 3courbe coupe l’ axe des abscisses au point de coordonnes : La

Réponse 4 courbe est au dessus de l’ axe des abscisses sur l’ intervalle: La

Réponse 5 : Le maximum de la fonction vaut 10

b) Soit x appartenant  l’ intervalle

.

Lorsque l’ entreprise fabrique et vend 0, 37 centaines d’ objets soit 37 objets, le bnfice est nul.

2. a)

Il faut prouver que

b)

Le bénéfest environ 9, 406 milliers d’ euros soit 9ice moyen 406 euros.

3.

Il faut vérifier que

Grâce à la répo

nse 2,

Le bénéfice est donc maximal lorsque x=1 c'est-à-dire pour une centaine d’ objets soit 1

On pouvait aussi dresser le tableau de variations.


-10
ln x
x
²

0,1 1 10

- -

- + 0

+ +

+ 0
-
10











00 o

bjet

s.

Voir icon more
Alternate Text