Level set method with topologi al derivatives

icon

24

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

24

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Level set method with topologi al derivatives in shape optimization Piotr FULMANSKI†, Antoine LAURAIN‡, Jean-François SCHEID‡, Jan SOKO?OWSKI‡ † Universiti of ?ód?, Fa ulty of Mathemati s Bana ha 22, 90-232 ?ód?, Poland, fulmanpimul.math.uni.lodz.pl ‡ Institut Elie Cartan UMR 7502, Nan y-Université, CNRS, INRIA, B.P. 239, 54506 Vandoeuvre-lès-Nan y Cedex, Fran e, antoine.laurainie n.u-nan y.fr, jean-fran ois.s heidie n-u.nan y.fr, sokolows@ie n.u-nan y.fr Abstra t. A lass of shape optimization problems is solved numeri ally by the level set method ombined with the topologi al derivatives for topology optimization. A - tually, the topology variations are introdu ed on the basis of asymptoti analysis, by an evaluation of extremal points (lo al maxima for the spe i problem) of the so- alled topologi al derivatives introdu ed by Sokolowski and Zo howski [24? for ellipti boundary value problems. Topologi al derivatives are given for energy fun tionals of linear boundary value problems. We present results, in luding numeri al examples, whi h onrm that the appli ation of topologi al derivatives in the framework of the level set method really improves the e ien y of the method.

  • topologi al

  • fun tional

  • solutions ? ?

  • small parameter whi

  • domain

  • shape optimization

  • fun tion

  • ?n ?n

  • sensitivity analysis


Voir icon arrow

Publié par

Nombre de lectures

21

Langue

English

† ‡ ‡



@
1
ological
atten
deriv
in
ativ
er,
es
lev
in
spaces
shap

e
o
optimization
ely
Piotr

FULMANSKI
assured
top

,
allo
An
ev
toine
er
LA
set
URAIN
pur
with

,
is
Jean-F
in
ran?ois
for
SCHEID
Mosco
d

,
of
Jan
ds
SOKO?O
of
WSKI
set
metho
y
set
el
Univ

ersiti
the
of
and
??d?,
solution
F
set
acult
b
y
ords.
of
optimization
Mathematics
t

with
ha
and
22,
The
90-232
problems
??d?,
e.g.
P
of
oland,
the
fulmanp@imul.math.uni.lodz.pl
ev
el
y
Institut
tly
Elie
to
Cartan
the
UMR
top
7502,
of
Nancy-Univ
is
ersit?,
mo
CNRS,
b
INRIA,
equations.
B.P
nature,
.
the
239,
onen
54506
optimization
V
the
ando
on
euvre-l?s-Nancy
is
Cedex,
additional
F
b
rance,
to

lev

d
sokolows
on
Lev
v
set
Key
ological
e
optimal
tro
d,

ativ

1.
A
Shap

elliptic
of
imp
shap
h
e
v
optimization
umerous
problems

is
solution
solv
erse
ed
of
n
e
umerically
b
b
mild
y
the
the
v
lev
Sob
el

set

metho
ho
d
optimalit

more
bined
b
with
domains.
the
a
top
is
ological
umerical
deriv
h
ativ
pro
es
for
for

top
domains.
ology

optimization.
framew
A
lev

whic
tually
the
,
and
the
determined
top
appropriate
ology
w
v
y
ariations
obtained
are
function
in
um
tro


of
on
during
the

basis
v
of

asymptotic
d
analysis,
lev
b
asymptotic
y
y
an

ev
in
aluation
the
of
etter
extremal

p
the
oin
e
ts
el
(lo
metho


maxima
based
for
the
the
oundary
sp
ariation

hnique.
problem)
W
of
Shap
the
optimization,
so-
el

metho
top
top
ological
deriv
deriv
e,
ativ
design.
es
In
in

tro
e

for
b
equations
y
an
Sok
ortan
olo

wski
of
and
of
Zo
ariations,

n
ho
applications
wski

[24


to
for
of
elliptic
v
b
problems.
oundary
existence
v
solutions
alue
shap
problems.
optimization
T

op
e
ological
under
deriv

ativ
under
es
so-called
are

giv
ergence
en
the
for
olev
energy
asso
functionals
with
of
minimizing
linear
of
b
domains,
oundary
w
v
er
alue
y
problems.
require
W
regularit
e
of
presen
oundaries
t
admissible
results,


,
n
particular
umerical
tion
examples,
paid
whic
n
h
metho

whic
that
during
the
optimization
application

of
w
top
the
ological
ology
deriv
hanges
ativ

es
One
in
the
the
for
framew
h
ork
ork
of
the
the
el
lev
function
el
h
set
dels
metho
domain
d
olution
really

impro
e
v
b
es
solving
the
Hamilton-Jacobi

Ho
of
ev
the
b
metho
its
d.
the
Examples
lev
sho
set
w,

that
n
the
b
lev
of
el

set
ts
metho
resulting
d
domains

the
bined
pro
with
T
the
impro
asymptotic
e
analysis,
p
is
of
robust
metho
for
based
the
the
shap
el
e
function,
optimization
analysis
problems,
emplo
and
ed,
it
lo
allo
of
ws
holes
to

iden
tifylo
domains
p
is
emplo
determined
resp
b
metho
y
the
analysis
top
of
ery
the
the
so-called
turns
top
used
ological
osed
deriv
[17],
ativ
for
es
b
of
n
shap
a
e
ological
functionals
for
under
b
study
us,
.
domain
In
ev
the
references
pap
y
er
Steklo
w
t
e

describ
or
e
whole
in
it
details
hanges

es
h

a
determined

one
bination,
analysis
used
b
already
of
in
ativ
literature,
er.
and
also
pro
deriv
vide
the
some
giv
examples
for
whic
,
h
the
sho
of
w

that
The
the
in
metho
9.
d
scalar
is
functional.
robust,
dieren
in
the
particular
e
impro
en
v
h
es
ho
the
our
optimal
the
v
y
alue
top
of
functional.
the
holes
shap
actual
e
the
functional
mization
obtained
W
as
h
a
ev
result
whic
of
a

if
F
e
or
b
the
order


v
the
enience
is
of
w
the
results
reader
determine
w
o
e
hnique
presen
the
t
oincar?
as
an
w
ological
ell
e
the

elemen
t
ts
ation
of
shap
mathematical
in
analysis
timization


asymptotic
[15
analysis
[24
of
asymptotic
sp
erator

for
b
presen
oundary
problem
v
metho
alue
v
problems
yp
with
h
resp
analysis
ect
expansions
to
parameter
small
of
parameter
of
whic
mo
h
of
mo
dened
dels
domains,
singular
unfortunately
p
e
erturbations
ev
of
satised

During
domains.
pro

ology
h
dened
analysis
of
is
maxima
required
deriv
for
the
determination
this
of
,
top
b
ological
to
deriv
domain
ativ
ters
es.
oin
The
y
n
the
umerical
ativ
metho

d
at
for
of
shap
ho
e
the
and
the
top
allo
ology

optimization
n
of
of
an
and
energy
to
functional
The
is
holes
pre-
determi-
sen
the
ted
ological
in
and
the
is
pap
ed
er.
t
The
pap
metho
tained,
d
app

pro
bines

the
h
shap
order
e
top
gradien
es.
t
end

osition
hnique
applied
and
of
the
expansion
asymptotic
Steklo
analysis
erator
for

maximization
h
of
of
an
ativ
energy
t
functional
is
for
in
elliptic
[27].
equations.
e
The
list
lev
the
el
application
set
analysis
metho
optimization.
d
of
is
framew
used
e
for
studied
the
y
ev

olution

of
[16

[19
domains
[25],
with
of
the
for
mo
oincar?
ving
giv
b

oundaries
e
determined
optimization
from
in
the
The
shap
e
e
n
sensitivit
for
y
b
analysis
problems,
of
energy
the
shap
energy
or
shap
w
e
vide
functional,
shap
the
and
top
solutions
ology
to

h
hanges
p
are
domain.
p
sak
erfor-
y
med
2
in
ving
addition
oundaries
b
giv
y
functions
analysis
in
of

the
whic
top
is
ological
v
deriv

ativ
assumption,<

Voir icon more
Alternate Text