24
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
24
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
† ‡ ‡
‡
†
‡
@
1
ological
atten
deriv
in
ativ
er,
es
lev
in
spaces
shap
e
o
optimization
ely
Piotr
FULMANSKI
assured
top
,
allo
An
ev
toine
er
LA
set
URAIN
pur
with
,
is
Jean-F
in
ran?ois
for
SCHEID
Mosco
d
,
of
Jan
ds
SOKO?O
of
WSKI
set
metho
y
set
el
Univ
ersiti
the
of
and
??d?,
solution
F
set
acult
b
y
ords.
of
optimization
Mathematics
t
with
ha
and
22,
The
90-232
problems
??d?,
e.g.
P
of
oland,
the
fulmanp@imul.math.uni.lodz.pl
ev
el
y
Institut
tly
Elie
to
Cartan
the
UMR
top
7502,
of
Nancy-Univ
is
ersit?,
mo
CNRS,
b
INRIA,
equations.
B.P
nature,
.
the
239,
onen
54506
optimization
V
the
ando
on
euvre-l?s-Nancy
is
Cedex,
additional
F
b
rance,
to
lev
d
sokolows
on
Lev
v
set
Key
ological
e
optimal
tro
d,
ativ
1.
A
Shap
elliptic
of
imp
shap
h
e
v
optimization
umerous
problems
is
solution
solv
erse
ed
of
n
e
umerically
b
b
mild
y
the
the
v
lev
Sob
el
set
metho
ho
d
optimalit
more
bined
b
with
domains.
the
a
top
is
ological
umerical
deriv
h
ativ
pro
es
for
for
top
domains.
ology
optimization.
framew
A
lev
whic
tually
the
,
and
the
determined
top
appropriate
ology
w
v
y
ariations
obtained
are
function
in
um
tro
of
on
during
the
basis
v
of
asymptotic
d
analysis,
lev
b
asymptotic
y
y
an
ev
in
aluation
the
of
etter
extremal
p
the
oin
e
ts
el
(lo
metho
maxima
based
for
the
the
oundary
sp
ariation
hnique.
problem)
W
of
Shap
the
optimization,
so-
el
metho
top
top
ological
deriv
deriv
e,
ativ
design.
es
In
in
tro
e
for
b
equations
y
an
Sok
ortan
olo
wski
of
and
of
Zo
ariations,
n
ho
applications
wski
[24
℄
to
for
of
elliptic
v
b
problems.
oundary
existence
v
solutions
alue
shap
problems.
optimization
T
op
e
ological
under
deriv
ativ
under
es
so-called
are
giv
ergence
en
the
for
olev
energy
asso
functionals
with
of
minimizing
linear
of
b
domains,
oundary
w
v
er
alue
y
problems.
require
W
regularit
e
of
presen
oundaries
t
admissible
results,
,
n
particular
umerical
tion
examples,
paid
whic
n
h
metho
whic
that
during
the
optimization
application
of
w
top
the
ological
ology
deriv
hanges
ativ
es
One
in
the
the
for
framew
h
ork
ork
of
the
the
el
lev
function
el
h
set
dels
metho
domain
d
olution
really
impro
e
v
b
es
solving
the
Hamilton-Jacobi
Ho
of
ev
the
b
metho
its
d.
the
Examples
lev
sho
set
w,
that
n
the
b
lev
of
el
set
ts
metho
resulting
d
domains
the
bined
pro
with
T
the
impro
asymptotic
e
analysis,
p
is
of
robust
metho
for
based
the
the
shap
el
e
function,
optimization
analysis
problems,
emplo
and
ed,
it
lo
allo
of
ws
holes
to
iden
tifylo
domains
p
is
emplo
determined
resp
b
metho
y
the
analysis
top
of
ery
the
the
so-called
turns
top
used
ological
osed
deriv
[17],
ativ
for
es
b
of
n
shap
a
e
ological
functionals
for
under
b
study
us,
.
domain
In
ev
the
references
pap
y
er
Steklo
w
t
e
describ
or
e
whole
in
it
details
hanges
es
h
a
determined
one
bination,
analysis
used
b
already
of
in
ativ
literature,
er.
and
also
pro
deriv
vide
the
some
giv
examples
for
whic
,
h
the
sho
of
w
℄
that
The
the
in
metho
9.
d
scalar
is
functional.
robust,
dieren
in
the
particular
e
impro
en
v
h
es
ho
the
our
optimal
the
v
y
alue
top
of
functional.
the
holes
shap
actual
e
the
functional
mization
obtained
W
as
h
a
ev
result
whic
of
a
if
F
e
or
b
the
order
v
the
enience
is
of
w
the
results
reader
determine
w
o
e
hnique
presen
the
t
oincar?
as
an
w
ological
ell
e
the
℄
elemen
t
ts
ation
of
shap
mathematical
in
analysis
timization
asymptotic
[15
analysis
[24
of
asymptotic
sp
erator
for
b
presen
oundary
problem
v
metho
alue
v
problems
yp
with
h
resp
analysis
ect
expansions
to
parameter
small
of
parameter
of
whic
mo
h
of
mo
dened
dels
domains,
singular
unfortunately
p
e
erturbations
ev
of
satised
During
domains.
pro
ology
h
dened
analysis
of
is
maxima
required
deriv
for
the
determination
this
of
,
top
b
ological
to
deriv
domain
ativ
ters
es.
oin
The
y
n
the
umerical
ativ
metho
d
at
for
of
shap
ho
e
the
and
the
top
allo
ology
optimization
n
of
of
an
and
energy
to
functional
The
is
holes
pre-
determi-
sen
the
ted
ological
in
and
the
is
pap
ed
er.
t
The
pap
metho
tained,
d
app
pro
bines
the
h
shap
order
e
top
gradien
es.
t
end
osition
hnique
applied
and
of
the
expansion
asymptotic
Steklo
analysis
erator
for
maximization
h
of
of
an
ativ
energy
t
functional
is
for
in
elliptic
[27].
equations.
e
The
list
lev
the
el
application
set
analysis
metho
optimization.
d
of
is
framew
used
e
for
studied
the
y
ev
℄
olution
℄
of
[16
[19
domains
[25],
with
of
the
for
mo
oincar?
ving
giv
b
oundaries
e
determined
optimization
from
in
the
The
shap
e
e
n
sensitivit
for
y
b
analysis
problems,
of
energy
the
shap
energy
or
shap
w
e
vide
functional,
shap
the
and
top
solutions
ology
to
h
hanges
p
are
domain.
p
sak
erfor-
y
med
2
in
ving
addition
oundaries
b
giv
y
functions
analysis
in
of
the
whic
top
is
ological
v
deriv
ativ
assumption,<