Incomplete generalized U-Statistics for food risk assessment. Patrice Bertail CREST, Laboratoire de Statistique Jessica Tressou INRA, Laboratoire de recherche sur la consommation Abstract : This paper proposes statistical tools for quantitative evaluation of the risk due to the presence of some particular contaminants in food. We focus on the estimation of the probability of the exposure to exceed the so-called provisional tolerable weekly intake (PTWI), when both consumption data and contamination data are independently available. A Monte-Carlo approximation of the plug-in estimator, which may be seen as an incomplete generalized U-statistics, is investigated. We obtain the asymptotic properties of this estimator and propose several con?dence intervals, based on two estimators of the asymptotic variance: (i) a bootstrap type estimator (ii) an approximate jackknife estimator relying on the Hoe?ding decomposition of the original U-statistics. As an illustration, we present an evaluation of the exposure to Ochratoxin A in France. Résumé : Cet article propose des outils statistiques d?évaluation du risque d?exposition due à la présence de certains contaminants dans l?alimentation. Nous cherchons essentiellement à estimer la probabilité que l?exposition dépasse la dose toxicologique hebdomadaire tolérable, lorsqu?on dispose de données de consomma- tion et de données de contamination indépendantes. On propose une approxima- tion de type Monte-Carlo de l?estimateur empirique de cette quantité, s?écrivant comme une U-statistique généralisée incomplète.
- food risk
- parametric monte
- respective individual weights
- main ideas
- qp denote
- carlo simulation
- contamination
- global exposure
- monte-carlo steps