Ensmp mathematiques 2004 mathematiques 2004

icon

4

pages

icon

Français

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

4

pages

icon

Français

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

CONCOURS COMMUN 2004 DES ÉCOLES DES MINES D’ALBI, ALÈS, DOUAI, NANTES Épreuve de Mathématiques (toutes filières) Mardi 18 mai 2004 de 14h00 à 18h00 Instructions générales : Les candidats doivent vérifier que le sujet comprend 4 pages numérotées 1/4, 2/4, 3/4, 4/4. ts sont invités à porter une attention particulière à la rédaction : les copies illisibles ou mal présentées seront pénalisées. Les candidats colleront sur leur première feuille de composition l’étiquette à code à barres corres-pondante. L'emploi d'une calculatrice est interdit ANALYSE PREMIERE PARTIE 2Soit (E) l’équation différentielle : (1 − x) y' = (2 − x)y . On note I l’intervalle ] - ∞, 1[. 2 − x1. Calculer une primitive A de la fonction a définie sur I par : a(x) = . 2(1 − x)2. Intégrer (E) sur I. 111 −xSoit f la fonction définie sur I par : f(.x) = e 1 − x 3. Calculer le développement limité de f au voisinage de 0 à l’ordre 3. CONCOURS COMMUN SUP 2004 DES ÉCOLES DES MINES D'ALBI, ALÈS, DOUAI, NANTES Épreuve de Mathématiques (toutes filières) Page 1/4 DEUXIEME PARTIE 4. Prouver par récurrence que, pour tout entier naturel n, il existe un polynôme P tel que : n11(n) 1 −xf (x) = P ( )e pour tout réel x appartenant à I. n 1 − xLa démonstration permet d’exprimer P (X) en fonction de P (X), P’ (X) et X . Expliciter n+1 n ncette relation. 5. Préciser P , P , P et P . 0 1 2 3 6. En dérivant n ...
Voir icon arrow

Publié par

Langue

Français

CONCOURS COMMUN 2004
DES ÉCOLES DES MINES D’ALBI, ALÈS, DOUAI, NANTES
Épreuve de Mathématiques
(toutes filières)
Mardi 18 mai 2004 de 14h00 à 18h00
Instructions générales :
Les candidats doivent vérifier que le sujet comprend 4 pages numérotées 1/4, 2/4, 3/4, 4/4.
Les candidats sont invités à porter une attention particulière à la rédaction : les copies illisibles ou
mal présentées seront pénalisées.
Les candidats colleront sur leur première feuille de composition l’étiquette à code à barres corres-
pondante.
L'emploi d'une calculatrice est interdit
ANALYSE
PREMIERE
PARTIE
Soit (E) l’équation différentielle :
.
y
x
y
x
)
2
(
'
)
1
(
2
=
On note I l’intervalle
] -
, 1[.
1.
Calculer une primitive A de la fonction
a
définie sur
I
par :
2
)
1
(
2
)
(
x
x
x
a
=
.
2.
Intégrer (E) sur I.
Soit f
la fonction définie sur I par :
x
e
x
x
f
=
1
1
1
1
)
(
.
3.
Calculer le développement limité de
f
au voisinage de 0 à l’ordre 3.
CONCOURS COMMUN SUP 2004 DES ÉCOLES DES MINES D'ALBI, ALÈS, DOUAI, NANTES
Épreuve de Mathématiques (toutes filières)
Page 1/4
Voir icon more
Alternate Text