avril Page

icon

4

pages

icon

Français

icon

Documents

2012

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

4

pages

icon

Français

icon

Documents

2012

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur

  • redaction


2 avril 2012 17:11 Page 1/3 2 0 1 2Mathématiques 1 TSI 4 heures Calculatrices autorisées Le sujet comporte quatre parties. Dans les parties I et II, on établit des résultats utiles pour les parties suivantes. Le jury tiendra compte de la clarté et de la précision de la rédaction. En particulier, les candidats veilleront à justifier avec soin que les hypothèses des théorèmes utilisés sont bien vérifiées. I I.A – I.A.1) Soit x un réel strictement positif. Montrer que l'intégrale ∫ +∞ 1 e?xt t dt est convergente et qu'elle vérifie les inégalités suivantes : 0 6 ∫ +∞ 1 e?xt t dt 6 1 x I.A.2) Montrer que, pour tout réel x > 0, la fonction définie sur ]0,+∞[ par t 7? e?t ? e?xt t , admet une limite quand t? 0+, dont on donnera la valeur. I.A.3) Déduire de ce qui précède que, pour tout réel x > 0, l'intégrale ∫ +∞ 0 e?t ? e?xt t dt est absolument convergente. I.B – On désigne désormais par F la fonction qui à x > 0 associe F (x) = ∫ +∞ 0 e?t ? e?xt t dt.

  • ?∆? ?? ?

  • classe c1 sur l'intervalle

  • e?t ?

  • base de l'espace vectoriel

  • entiers supérieurs

  • heures calculatrices autorisées

  • famille de polynômes

  • polynôme de degré inférieur


Voir icon arrow

Publié par

Publié le

01 avril 2012

Langue

Français

MATHÉMATIQUES I
Concours Centrale-Supélec 2002
1/4
MATHÉMATIQUES I
Filière PC
La première partie de ce problème est consacrée à la description d’une procédure
géométrique qui aboutit naturellement à la construction d’une fonction continue
:
que l’on étudie sommairement à la Partie II. La troisième partie
concerne les propriétés de dérivabilité des fonctions continues
périodiques
ayant une série de Fourier lacunaire. Enfin, à la Partie IV on combine les résul-
tats des parties I et III pour montrer que la fonction
n’est dérivable en aucun
point de
.
On note
et
et on désigne par
l’espace des fonc-
tions de
dans
qui sont continues et
périodiques.
Si
on rappelle que ses coefficients de Fourier sont donnés pour
par
, la série de Fourier (formelle) de
étant
.
Partie I -
Définition de la fonction
I.A -
On suppose l’espace
muni de sa structure euclidienne canonique. On
définit
:
par :
,
et
est la projection orthogonale de
sur la droite passant par
et
si
.
I.A.1)
On suppose
,
et l’on pose
,
,
,
,
,
.
Que représentent les points
par rapport au triangle
?
I.A.2)
Montrer que si
alors
,
.
I.B - Pour
on pose
et on définit par
récurrence pour
la suite
par
.
I.B.1)
Soit
,
. Montrer que, si l’on a
, alors
et
.
x
]0,
π
[
IR
2
π
x
]0,
π
[
IN
IN
\ 0
{
}
=
ZZ
ZZ
\ 0
{
}
=
C
2
π
IR
I
C
2
π
f
C
2
π
n
ZZ
f
ˆ
n
(
)
1
2
π
-----
f
t
(
)
π
π
=
e
i
nt
dt
f
f
ˆ
n
(
)
n
ZZ
e
i
nt
x
IR
2
T
IR
3
IR
3
T
x
x
0
,
,
(
)
x
x
0
,
,
(
)
=
T
x
y
z
,
,
(
)
x
'
y
'
z
'
,
,
(
)
=
x
'
y
=
y
'
z
'
,
(
)
y
z
,
(
)
x
0
,
(
)
y
z
,
(
)
x
y
z
,
,
(
)
x
x
0
,
,
(
)
x
y
z
0
A
x
0
,
(
)
=
B
y
z
,
(
)
=
C
y
z
,
(
)
=
A
x
'
0
,
(
)
=
B
y
'
z
'
,
(
)
=
C
y
'
z
'
,
(
)
=
x
'
y
'
z
'
,
,
(
)
T
x
y
z
,
,
(
)
=
A
B
C
,
,
ABC
x
y
z
,
,
(
)
x
x
0
,
,
(
)
y
'
x
'
2
z
2
y
x
(
)
y
x
(
)
2
z
2
+
-------------------------------
=
z
'
z
y
x
(
)
2
z
2
y
x
(
)
2
z
2
+
-------------------------------
=
t
]0,
π
[
X
0
t
(
)
0
1
cotan
t
, ,
(
)
=
n
IN
X
n
t
(
)
x
n
t
(
)
y
n
t
(
)
z
n
t
(
)
,
,
(
)
=
X
n
1
+
t
(
)
T
X
n
t
(
)
(
)
=
n
IN
t
]0,
π
[
z
n
t
(
)
0
=
z
n
1
+
t
(
)
0
=
y
n
1
+
t
(
)
x
n
1
+
t
(
)
0
=
Voir icon more
Alternate Text