An ele tromagneti damping ma hine

icon

8

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

8

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

An ele tromagneti damping ma hine: model, analysis and numeri s A. Bua , Y. Maday y , F. Rapetti z Sunto. { In questo lavoro viene onsiderato il modello bidimensionale ompleto di sistema elettromagneti o in movimento: le equazioni dei ampi elettromagneti i sono a oppiate on quelle della me ani a e il sistema osi ottenuto risulta essere non lineare nell'a oppiamento. Vengono analizzate la buona posizione del problema e la regolarita della soluzione ontinua; si propone inoltre uno s hema di dis retiz- zazione di tipo espli ito. Si dimostra la buona posizione e la onvergenza della formulazione dis reta e si propongono al uni test numeri i omprovanti la onver- genza dello s hema proposto. L'algoritmo fornis e la simulazione ompleta di un freno magneti o e permette di mettere in evidenza i fenomeni non lineari legati al suo funzionamento. Introdu tion In a oupled magneto-me hani al system, the for es due to the magneti eld make the free stru ture move and the resulting variation in the stru ture ongura- tion modies the distribution of the magneti eld and onsequently of the indu ed for es. Therefore, the intera tion between magneti and me hani al phenomena annot be simulated independently (see also Gaspalou et al., 1995).

  • rotation angle

  • oupled system

  • indu ed

  • ed ele tromagneti

  • magneti eld

  • rotor

  • system

  • orsay edex

  • al evaluation


Voir icon arrow

Publié par

Langue

English

An

damping
ving
XI,
the

hange
hine:
mo
mo
h
del,
equilibrium
analysis
erique
and

n
As
umerics
axis.
A.

Bua


step
,
via,
Y.

Mada
and
y

y
n
,

F.
rotor,
Rap
on
etti
the
z
The
Sun
magnetic
to.
when
{
magnetic
I
that
n
Univ
questo
via
la
Marie
v
9029
oro
rance
viene
T

it
il
force
mo
the
dello
of
bidimensionale
e

w
di
stands
sistema
rotate

e
in
pro
mo
magnetic
vimen
inserted
to:

le
osed
equazioni
next
dei


pro

has
sono
onding

mo

e
quelle
do
della
Dipartimen

Studi
e
1,
il
d'analyse
sistema


Jussieu

z


otten
Orsa
uto
electro-
risulta

essere

non
a
lineare


global
to.
on
V
part
engono
through
analizzate
ev
la
magnetic
buona
example,
p
a
osizione
of
del
solid
problema
whic
e
and
la
h
regolarit
its
a
algorithm
della
is
soluzione


at
tin
step,
ua;
obtained
si
solution
prop
to
one
equation
inoltre

uno
is
sc
the
hema
for
di
of
discretiz-

zazione
a
di
t,
tip
naturally
o
free
esplicito.
hed
Si
osition
dimostra
a
la
In
buona
the
p
to
osizione
enough
e

la
not

o
v
di
ergenza
a
della
P
form
F
ulazione
P
discreta
Lab
e
um
si
Univ
prop
Pierre
ongono
4,

P
test
F
n
-
umerici
Univ

P
v
506,
an

ti
the
la
magnetic


v
equations.
er-
o
genza
out
dello
h
sc

hema
is
prop
to
osto.
the
L'algoritmo
magnetic

acting
la
the
sim
ving
ulazione
of

system,
di
the
un
umerical
freno
aluation
magnetico
the
e
eld.
p
an
ermette
w
di
study
mettere
system
in
osed
evidenza
t
i
o
fenomeni
parts:
non
stator,
lineari
h
legati
still,
al
the
suo
whic
funzionamen

to.
around
In
rotation
tro
The

w
In

a
based

an




system,

the
time
forces
the
due
force
to
from
the
eld
magnetic
is
eld
in
mak
the
e

the
to
free
the

t.
mo
latter
v
imp
e
to
and
mo
the
part
resulting
the
v
step
ariation
the
in
eld
the
In

of

friction
tion

mo
the
dies

the
ends
distribution
the
of
part
the
reac
magnetic
its
eld
p
and


to
tly
zero
of
torque.
the
this

del,
forces.
time
Therefore,
has
the
b
in
small

so
b
the
et
force
w
es
een

magnetic
to
and


to


phenomena
ersit

degli
b
di
e
a
sim
Via
ulated
errata
indep
27100
enden
a
tly
y
(see
oratoire
also
n
Gaspalou

et
BC187
al.
ersit
,
e
1995).
et
The
Curie
mo
place
deling
75252
of
aris
this
05,

rance
system
ASCI
requires
UPR
to
CNRS,
tak
ersit
e
e
sim
aris
ultaneously
Building
in
91403
to
y

F
t
1initial configuration
computation
n θ of the magneticτ 0y z potential
A temporal incrementrotor z
x
ΓΓ
calculation ofΩ1
the magnetic torque
θ +θ0Trotor rotor m
rotor
stator Ω
2 solution of the
mechanical application of
equations the computed
ω and angleθ θ
,
1991).
The
the
of
elemen
magnetic
a
force
the
is
a
obtained
ortan
from
general,
the
sliding
generalized
d
Loren
e
tz
a
la

w
dep
and
to
the
in
mag-
eakly

m
eld
ultipliers
is
the

m
b
The
y
ork
applying
imp
the
terface
sliding
of
mesh
the
mortar
k
nite
not
elemen
(and
t
the
strategy
rotor
to
d
the
transmission
magnetic
y
v
ey
ector
a
p
to
oten
the
tial
the
form
the
ulation
space
of
the
the
of
eddy
ws

mesh
ts
a
problem,
b
as
size
pro-
angle
p
In
osed

in

Bua
not
et
magnetic
al.
(see
,
t
1999
If
(see
of
Bernardi
us,
et
hing
al.
terface)
,
stator
1994
The
for
mortar
more
to
details
ose
on
at
the
terface
mortar
of
elemen
The
t
t
metho

d).
Lagrangian
T
in
o
go
a
erties
v
problem.
oid
text
the
de

metho
of
of
a
is

the
v
traces
ectiv
in
e
ossibilit
term

in
d
the
to
equations,
a
w
osed
e
part
w
one,
ork

in
w
Lagrangian
elemen
v
the
ariables:
the
the

problem
time
equations
sim
are

solv
is
ed
since
in
time
their
angle
o
t
wn
on
frames,
assen
that

are

one

Voir icon more
Alternate Text