An abstract analysis framework for nonconforming approximations of the single phase Darcy equation

icon

29

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

29

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

An abstra t analysis framework for non onforming approximations of diusion problems on general meshes Léo Agélas ?1 , Daniele A. Di Pietro †1 , Robert Eymard ‡2 , and Roland Masson 1 1 IFP, 1 & 4 av. du Bois-Préau 92852 Rueil-Malmaison Cedex (Fran e) 2 Université Paris-Est Marne-la-Vallée 5 bd. Des artes F-77454 Champs-sur-Marne Marne-la-Vallée Cedex 2 (Fran e) February 11, 2010 Abstra t In this work we propose a unied analysis framework en ompassing a wide range of non onforming dis retizations of anisotropi heterogeneous diusion operators on general meshes. The analysis relies on two dis rete fun tion analyti tools for pie ewise polynomial spa es, namely a dis rete Sobolev-Poin aré inequality and a dis rete Relli h theorem. The onver- gen e requirements are grouped into seven hypotheses, ea h of them har- a terizing one salient ingredient of the analysis. Finite volume s hemes as well as the most ommon dis ontinuous Galerkin methods are shown to t in the analysis. A new nite volume ell- entered method is also introdu ed. 1 Introdu tion Several methods have been developed through the years to solve the single phase Dar y equation, often of non- onforming type.

  • let

  • methods

  • marne marne

  • vh

  • finite volume

  • fun tion

  • vh ?

  • sobolev-poin aré inequality

  • n?n whi

  • rvh vh ?


Voir icon arrow

Publié par

Langue

English

∗ † ‡
§



§
are
ximations

of
to
diusion
the
problems
lo
on
daniele-an
general
ds
meshes
a
L?o
robust
Ag?las
of
appro
natural
1
in
,

Daniele
ed
A.
t
Di
erators.
Pietro
in
nonconforming
v
1

,
imp
Rob
y
ert
eak
Eymard
sho
for
new
2
is
,

and
b
Roland
ears
Masson
equation,
ork

1
heterogeneous
1
y
IFP
in
,
demanding
1
to
&
for
4
of
a
aect
v.
It
du
a
Bois-Pr?au
ergence
92852
b
Rueil-Malmaison
whic
Cedex
the
(F

rance)
to
2
analysis.
Univ
v
ersit?
metho
P
in
aris-Est
In
Marne-la-V
eral
all?e
v
5
dev
b
the
d.
solv
Descartes
phase
F-77454
of
Champs-sur-Marne
e.
Marne-la-V
t
all?e
discretization
Cedex
diusion
2
strong
(F
heterogeneit
rance)
presen
F
of
ebruary
th
11,

2010
resp

oth.
In
ev
this
domains,
w
regularit
ork
diusion
w
ma
e
regularit
prop
solution
ose
th
a
t
unied
metho
analysis

framew
minimal
ork
i.e.

to
a
spaces
wide
the
range
ulation
of

nonconforming
An
discretizations
are
of
wn

t
heterogeneous
the
diusion
A
op
nite
erators
olume
on
tered
general
d
meshes.
also
The
tro
analysis
1
relies
tro
on
Sev
t
metho
w
ha
o
e
discrete
een
function
elop
analytic
through
to
y
ols
to
for
e
piecewise
single
p
Darcy
olynomial
often
spaces,

namely
yp
a
A
discrete
ingredien
Sob
is
olev-P
robust
oincar?
of
inequalit

y
op
and
Indeed,
a
anisotrop
discrete
and
Rellic
y
h
usually
theorem.
t
The
problems


v
terest,
er-
us
gence
an
requiremen
h
ts
with
are
ect
group
b
ed
Moreo
in
er,
to
en
sev
simple
en
the
h
w
yp
y
otheses,
the


h
t
of
y
them
the

y
har-
the
acterizing
itself.
one
is
salien
us
t
ortan
ingredien
for
t
discretization
of
d
the
ensure
analysis.
v
Finite
to
v
regularit
olume
solutions,
sc
solutions
hemes
elonging
as
the
w
function
ell
in
as
h
the
w
most
form

of
discon
analysis
framew

roland.masson@ifp.fr
tonio.di-pietro@ifp.fr
Galerkin
rob
metho
ds
tin
1
uous1,pW
Vh
V k·k v ∈ Vh V h hh
1H vh
k·kVh
1H
e
o
v
v
a
er
enden
the
satisfy
mesh
p
and
the
b
ols,
ecause
y
lo
use

,
grid
2
renemen

t
w

[24]
b
lems
e
of
required.
[17,
In
h
this
whatev
w
k
ork
meshes,
w
F
e
e
prop
w,
ose
order
a

unied
Pietro
analysis
presen
framew
general
ork
discretization

spirit
a
results
wide
of
range
relies
of
discrete


metho
(see,
ds
p
whic
in
h
p
resp
e
ond
ecause
to
the
the
a
ab

o
and
v
e
e

requiremen
analysis
ts.
to
In
regularit
particular,
e.g.,
b

oth
Ortner
Finite
ha
V
discrete
olume
Eymard,
(FV)
olynomial
and
of
discon
ergence
tin
linear
uous
p
Galerkin
this
(dG)
ab
metho
osing
ds
the
will
d
b
framew
e
functional
sho
authors
wn
e
to
inequalities
t
ounded
in
K
the
IV.25]).
framew
for
ork.
e
The
ector
analogies
solution
b
on
et
a
w
the
een
ws:
these
with
t
whic
w
to
o
norm
families
is
of

discretization
norm
metho
of
ds
ectiv
ha
ha
v
ed
e
tion
often
the
b
to
een
v
highligh
relied
ted,
Elemen
and
yielding
the
but
presen
assumptions
t
solution
analysis
Brezzi,
aims
and
at

pro
Bua
viding
and
a
Ern

e
t
extended
framew
to
ork
b
for
and
b
piecewise
oth.
spaces
Finite
By
V
h
olume

metho
of
ds
b
ha
non-linear
v
b
e
in
b
[24].
een
ork
widely
extend
emplo
v
y
y
ed

in
erties
industrial
v
applica-
discretization
tions
minimal
b
The
ecause
prop
of
the

results
y
where
of
tro
implemen
or
tation,
whic

Sob
to

ph
for
ysical
in
in
using
tuition
v
and
[9,

order



in
In
spaces,

assume
t
the
y
v
ears,
h
these
sough
metho
op
ds
suitable
ha
space
v
ailable.
e
ideas
kno

wn
as
an
y
imp
equipp
etuous
norm
dev
oth
elopmen
for
t
general
thanks

to
desirable
b
the
oth


.
and
b

the
w
is
orks.
b
In
the
particular,
discrete
the
sp

e),
v
they
ergence
v
analysis

of
extensiv
FV
atten
metho
o
ds
er
has
last
b
Up
een
no
dealt

with
ergence
b
has
y
on
Ey-
Finite
mard,
t
Gallou?t,
ols,
Herbin
asymptotical
and
estimates

requiring
(see
y
e.g.
on
[22,
exact

(see,
who
Arnold,
ha
Co
v
kburn
e
Marini
deriv
In
ed
t
new
orks,
discrete
and
functional
[13]
analysis
Di
to
and
ols
[17]
allo
v
wing
indep
to
tly
pro
the
v
analysis
e
ols
the
ted

y
v
Gallou?t
ergence
Herbin
to
to
minim
p
um
function
regularit
on
y
meshes.
solutions.
means
The

discrete
to
analysis
the
framew
v
ork
analysis
ab
dG
o
of
v
oth
e
and
has
prob-
b

een
e
used
erformed
for
the
a
of
v
In
ariet
w
y
w
of
further
FV
the
metho
o
ds
e
applied
b
to
prop
linear
an
or
set
non-linear
prop
problems
ensuring
(see

e.g.
ergence
[4,
a

metho
Within
to
the
regularit
framew
solutions.
ork
analysis
of
ork

osed
Finite
on
Dierence
discrete
appro
analysis
ximations,
of



the
metho
in
ds

on
no
general
little
meshes
norms
ha
h
v
discrete
e
olev
also
and
b
a
een
result
dev
b
elop

ed.

These
norms
metho
the
ds
olmogoro
rely

on
e.g.,
dieren
Theorem
t
In
discrete
to
analysis
the
to
results
ols

than
piecewise
the
olynomial
ones
w
used
shall
here,
that,
and
er
w
v
e
space
refer
ha
to
whic
Brezzi,
the
Lipnik
is
o
t,
v,

Shashk
erator
o
a
v
piecewise
and
olynomial
Simoncini
is
[10
v


Voir icon more
Alternate Text