29
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe et accède à tout notre catalogue !
Découvre YouScribe et accède à tout notre catalogue !
29
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Langue
English
∗ † ‡
§
∗
†
‡
§
are
ximations
of
to
diusion
the
problems
lo
on
daniele-an
general
ds
meshes
a
L?o
robust
Ag?las
of
appro
natural
1
in
,
Daniele
ed
A.
t
Di
erators.
Pietro
in
nonconforming
v
1
,
imp
Rob
y
ert
eak
Eymard
sho
for
new
2
is
,
and
b
Roland
ears
Masson
equation,
ork
1
heterogeneous
1
y
IFP
in
,
demanding
1
to
&
for
4
of
a
aect
v.
It
du
a
Bois-Pr?au
ergence
92852
b
Rueil-Malmaison
whic
Cedex
the
(F
rance)
to
2
analysis.
Univ
v
ersit?
metho
P
in
aris-Est
In
Marne-la-V
eral
all?e
v
5
dev
b
the
d.
solv
Descartes
phase
F-77454
of
Champs-sur-Marne
e.
Marne-la-V
t
all?e
discretization
Cedex
diusion
2
strong
(F
heterogeneit
rance)
presen
F
of
ebruary
th
11,
2010
resp
oth.
In
ev
this
domains,
w
regularit
ork
diusion
w
ma
e
regularit
prop
solution
ose
th
a
t
unied
metho
analysis
framew
minimal
ork
i.e.
to
a
spaces
wide
the
range
ulation
of
nonconforming
An
discretizations
are
of
wn
t
heterogeneous
the
diusion
A
op
nite
erators
olume
on
tered
general
d
meshes.
also
The
tro
analysis
1
relies
tro
on
Sev
t
metho
w
ha
o
e
discrete
een
function
elop
analytic
through
to
y
ols
to
for
e
piecewise
single
p
Darcy
olynomial
often
spaces,
namely
yp
a
A
discrete
ingredien
Sob
is
olev-P
robust
oincar?
of
inequalit
y
op
and
Indeed,
a
anisotrop
discrete
and
Rellic
y
h
usually
theorem.
t
The
problems
v
terest,
er-
us
gence
an
requiremen
h
ts
with
are
ect
group
b
ed
Moreo
in
er,
to
en
sev
simple
en
the
h
w
yp
y
otheses,
the
h
t
of
y
them
the
y
har-
the
acterizing
itself.
one
is
salien
us
t
ortan
ingredien
for
t
discretization
of
d
the
ensure
analysis.
v
Finite
to
v
regularit
olume
solutions,
sc
solutions
hemes
elonging
as
the
w
function
ell
in
as
h
the
w
most
form
of
discon
analysis
framew
roland.masson@ifp.fr
tonio.di-pietro@ifp.fr
Galerkin
rob
metho
ds
tin
1
uous1,pW
Vh
V k·k v ∈ Vh V h hh
1H vh
k·kVh
1H
e
o
v
v
a
er
enden
the
satisfy
mesh
p
and
the
b
ols,
ecause
y
lo
use
,
grid
2
renemen
t
w
[24]
b
lems
e
of
required.
[17,
In
h
this
whatev
w
k
ork
meshes,
w
F
e
e
prop
w,
ose
order
a
unied
Pietro
analysis
presen
framew
general
ork
discretization
spirit
a
results
wide
of
range
relies
of
discrete
metho
(see,
ds
p
whic
in
h
p
resp
e
ond
ecause
to
the
the
a
ab
o
and
v
e
e
requiremen
analysis
ts.
to
In
regularit
particular,
e.g.,
b
℄
oth
Ortner
Finite
ha
V
discrete
olume
Eymard,
(FV)
olynomial
and
of
discon
ergence
tin
linear
uous
p
Galerkin
this
(dG)
ab
metho
osing
ds
the
will
d
b
framew
e
functional
sho
authors
wn
e
to
inequalities
t
ounded
in
K
the
IV.25]).
framew
for
ork.
e
The
ector
analogies
solution
b
on
et
a
w
the
een
ws:
these
with
t
whic
w
to
o
norm
families
is
of
discretization
norm
metho
of
ds
ectiv
ha
ha
v
ed
e
tion
often
the
b
to
een
v
highligh
relied
ted,
Elemen
and
yielding
the
but
presen
assumptions
t
solution
analysis
Brezzi,
aims
and
at
pro
Bua
viding
and
a
Ern
e
t
extended
framew
to
ork
b
for
and
b
piecewise
oth.
spaces
Finite
By
V
h
olume
metho
of
ds
b
ha
non-linear
v
b
e
in
b
[24].
een
ork
widely
extend
emplo
v
y
y
ed
in
erties
industrial
v
applica-
discretization
tions
minimal
b
The
ecause
prop
of
the
results
y
where
of
tro
implemen
or
tation,
whic
Sob
to
ph
for
ysical
in
in
using
tuition
v
and
[9,
order
in
In
spaces,
assume
t
the
y
v
ears,
h
these
sough
metho
op
ds
suitable
ha
space
v
ailable.
e
ideas
kno
wn
as
an
y
imp
equipp
etuous
norm
dev
oth
elopmen
for
t
general
thanks
to
desirable
b
the
oth
.
and
b
the
w
is
orks.
b
In
the
particular,
discrete
the
sp
e),
v
they
ergence
v
analysis
of
extensiv
FV
atten
metho
o
ds
er
has
last
b
Up
een
no
dealt
with
ergence
b
has
y
on
Ey-
Finite
mard,
t
Gallou?t,
ols,
Herbin
asymptotical
and
estimates
requiring
(see
y
e.g.
on
[22,
exact
℄
(see,
who
Arnold,
ha
Co
v
kburn
e
Marini
deriv
In
ed
t
new
orks,
discrete
and
functional
[13]
analysis
Di
to
and
ols
[17]
allo
v
wing
indep
to
tly
pro
the
v
analysis
e
ols
the
ted
y
v
Gallou?t
ergence
Herbin
to
to
minim
p
um
function
regularit
on
y
meshes.
solutions.
means
The
discrete
to
analysis
the
framew
v
ork
analysis
ab
dG
o
of
v
oth
e
and
has
prob-
b
een
e
used
erformed
for
the
a
of
v
In
ariet
w
y
w
of
further
FV
the
metho
o
ds
e
applied
b
to
prop
linear
an
or
set
non-linear
prop
problems
ensuring
(see
e.g.
ergence
[4,
a
℄
metho
Within
to
the
regularit
framew
solutions.
ork
analysis
of
ork
osed
Finite
on
Dierence
discrete
appro
analysis
ximations,
of
℄
the
metho
in
ds
on
no
general
little
meshes
norms
ha
h
v
discrete
e
olev
also
and
b
a
een
result
dev
b
elop
ed.
These
norms
metho
the
ds
olmogoro
rely
on
e.g.,
dieren
Theorem
t
In
discrete
to
analysis
the
to
results
ols
than
piecewise
the
olynomial
ones
w
used
shall
here,
that,
and
er
w
v
e
space
refer
ha
to
whic
Brezzi,
the
Lipnik
is
o
t,
v,
Shashk
erator
o
a
v
piecewise
and
olynomial
Simoncini
is
[10
v