Advances in Applied Mathematics

icon

10

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

10

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Advances in Applied Mathematics 16, (????),297–305 THE k-EXTENSION OF A MAHONIAN STATISTIC BY Guo-Niu HAN (?) ABSTRACT. — Clarke and Foata have recently studied the k-extension of several Mahonian statistics. There is an alternate definition for the k- Denert statistic that is derived in the present paper. RESUME. — Recemment, Clarke et Foata ont etudie la k-extension de plusieurs statistiques mahoniennes. Dans cet article, on introduit une autre definition pour la k-statistique de Denert. 1. Introduction Let (a; q)n = { 1, if n = 0; (1? a)(1? aq) . . . (1? aqn?1), if n ≥ 1 ; denote the q-ascending factorial and for each sequence c = (c1, c2, . . . , cr) of non-negative integers, of sum m, let [ m c1, c2, . . . , cr ] = (q; q)m(q; q)c1(q; q)c2 . . . (q; q)cr denote the q-multinomial coefficient. Also denote by R(c) the class of all m! /(c1! c2! . .

  • let

  • can well-defined

  • denk ?

  • denk

  • hence denk

  • also let

  • xj1xj2 ·

  • large letters


Voir icon arrow

Publié par

Nombre de lectures

14

Langue

English

Advances in Applied Mathematics16, (),297–305
THEkEXTENSION OF A MAHONIAN STATISTIC
BY
GuoNiu)HAN (
ABSTRACT. — Clarke and Foata have recently studied thekextension of several Mahonian statistics. There is an alternate definition for thekDenert statistic that is derived in the present paper.
´ ´ RESUMEece´nemmlC,tekraR.e´aletFoataont´etudikextension de plusieurs statistiques mahoniennes. Dans cet article, on introduit une autrede´nitionpourlakstatistique de Denert.
Let
1. Introduction
1, (a;q) = n n1 (1a)(1aq). . .(1aq),
ifn;= 0 ifn1 ;
denote theqascending factorialand for each sequencec= (c1, c2, . . . , cr) of nonnegative integers, of summ, let   m(q;q)m = c1, c2, . . . , cr(q;q)c1(q;q)c2. . .(q;q)cr
denote theqmultinomial coefficient. Also denote byR(c) the class of allm!/(c1!c2!. . . cr!) rearrangements of the (nondecreasing) word c1c2cr 1 2. . . r. ByMahonian statisticit is meant an integervalued map ping “stat” defined on each classR(c) that satisfies the identity   X m statw =q(wR(c)). c1, c2, . . . , cr w
Theinversion number“inv” and themajor index“maj” are classical examples of Mahonian statistics (see [M]). Another example of such a statistic is provided with theDenert statistic, “den”, introduced recently (see [Den]) in the study of hereditary orders in central simple algebras. The statistics “maj” and “den” have two definitions, one “natural” or
( ) Supported in part by a grant of the European Community Programme on Algebraic Combinatorics, 199495.
1
Voir icon more
Alternate Text