A functional limit theorem for a 2d random walk with dependent marginals

icon

15

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

15

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

A functional limit theorem for a 2d-random walk with dependent marginals Nadine Guillotin-Plantard?, Arnaud Le Ny† May 21, 2007 Abstract We prove a non-standard functional limit theorem for a two dimensional simple random walk on some randomly oriented lattices. This random walk, already known to be transient, has different horizontal and vertical fluctuations leading to different normalizations in the functional limit theorem, with a non-Gaussian horizontal behavior. We also prove that the horizontal and vertical components are not asymptotically independent. AMS 2000 subject classification: Primary- 60F17 ; secondary- 60G18, 60K37. Keywords and phrases: Random walks, random environments, random sceneries, oriented lattices, functional limit theorems, self-similar and non-Gaussian processes. ?Universite Claude Bernard - Lyon I, institut Camille Jordan, batiment Braconnier, 43 avenue du 11 novem- bre 1918, 69622 Villeurbanne Cedex, France. E-mail: †Universite de Paris-Sud, laboratoire de mathematiques, batiment 425, 91405 Orsay cedex, France. E-mail: 1

  • local time

  • limit theorem

  • almost any

  • process

  • lemma has

  • generalized random

  • distribution when

  • standard brownian


Voir icon arrow

Publié par

Nombre de lectures

11

Langue

English

A functional limit theorem for a 2d-random walk with dependent marginals Nadine Guillotin-Plantard , Arnaud Le Ny May 21, 2007
Abstract We prove a non-standard functional limit theorem for a two dimensional simple random walk on some randomly oriented lattices. This random walk, already known to be transient, has different horizontal and vertical fluctuations leading to different normalizations in the functional limit theorem, with a non-Gaussian horizontal behavior. We also prove that the horizontal and vertical components are not asymptotically independent.
AMS 2000 subject classification : Primary- 60F17 ; secondary- 60G18, 60K37. Keywords and phrases : Random walks, random environments, random sceneries, oriented lattices, functional limit theorems, self-similar and non-Gaussian processes.
Universit´eClaudeBernard-LyonI,institutCamilleJordan,baˆtimentBraconnier,43avenuedu11novem-bre 1918, 69622 Villeurbanne Cedex, France. E-mail: nadine.guillotin@univ-lyon1.fr Universit´edeParis-Sud,laboratoiredemathe´matiques,baˆtiment425,91405Orsaycedex,France.E-mail: arnaud.leny@math.u-psud.fr 1
Voir icon more
Alternate Text