A FETI preconditioner for two dimensional edge element approximations of Maxwell equations on non matching grids

icon

15

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

15

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

A FETI PRECONDITIONER FOR TWO DIMENSIONAL EDGE ELEMENT APPROXIMATIONS OF MAXWELL'S EQUATIONS ON NON-MATCHING GRIDS FRANCESCA RAPETTI AND ANDREA TOSELLI y Abstract. A class of FETI methods for the mortar approximation of a vector eld problem in two dimensions is introduced and analyzed. Edge element discretizations of lowest degree are con- sidered. The method proposed can be employed with geometrically conforming and non{conforming partitions. Our numerical results show that its condition number increases only with the number of unknowns in each subdomains, and is independent of the number of subdomains and the size of the problem. Key words. Edge elements, Maxwell's equations, domain decomposition, FETI, precondition- ers, non-matching grids AMS subject classications. 65F10, 65N22, 65N30, 65N55 1. Introduction. In this paper, we consider the boundary value problem Lu := curl (a curlu) +A u = f in ; u t = 0 on @ ; (1) with a bounded polygonal domain in R 2 . Here curl v := 2 6 6 4 @v @x 2 @v @x 1 3 7 7 5 ; curlu := @u 2 @x 1 @u 1 @x 2 ; see, e.

  • approximation

  • dimensional subspace

  • then eliminated

  • dependent problems

  • can then

  • mortar approximations

  • sciences program

  • applied mathematical

  • feti


Voir icon arrow

Publié par

Nombre de lectures

8

Langue

English

Sud
A
is
FETI
t
PRECONDITIONER
u
F
of
OR

),
TW
curl
O
ectors
DIMENSIONAL
Comm
EDGE
Applied
ELEMENT
of
APPR
2
O
v
XIMA
curl
TIONS
space
OF

MAXWELL
h
EQUA
elations
TIONS
URL
ON
1
NONA
b
TCHING
of
GRIDS
:=
FRANCESCA

RAPETTI
pro

v
AND
2
ANDREA
u
TOSELLI
b
y
[17
Abstract
anishing
A
;
class
Orsa
of
as
FETI
and
metho
the
ds
ork
for
as
the
t
mortar
has
appro
tangen
ximation
w
of
the
a
space
v
H
ector
(
ld
2
problem
H
in
the
t
norm
w
Z
o
Z
dimensions
;
is
u
in
tial
tro
of
duced
;
and
b
analyzed
(
Edge
The
elemen
;
t
onen
discretizations
y
of
9029
lo
,
w
Eail
est
This
degree
y
are
Con
con
Direction
sidered
CNRS
The
y
metho
Mercer
d
E
prop
This
osed
part
can
of
b
Con
e
domain
emplo
diameter
y
the
ed
to
with
.
geometrically
form
conforming
(1)
and
tro
nononforming
Hilb
partitions
url
Our
b
n
;
umerical
v
results
2
sho
curl
w
2
that
The
its
;
condition
ed
n
wing
um
and
b
u
er
curl
increases
u
only
x
with
curl
the
d
n
u
um
:=
b
u
er
The
of
onen
unkno
t
wns
v
in
H
eac
on
h
@
sub
to
domains
1
and

);
is
8
indep
of
enden
H
t
with
of
tial
the
on
n
denoted
um
0
b

er
P
of
ersit
sub
506,
domains
Cedex
and
.
the
rancescaap
size
ork
of
orted
the
Europ
problem
y
Key
TMR
w
y
ords
R
Edge
ternationnelles
elemen
rance
ts
PICS
Maxw
t
ell
Sciences
equations
New
domain
10012,
decomp
toselliimsyudu
osition
ttpwwath
FETI
ork
precondition
orted
ers
y
nonatc
Sciences
hing
U
grids
Energy
AMS
DEF
sub
The
ject

classiations
unit
F
and
N
is
N
unit
N
t
1.
its
In
oundary
tro
The
duction
eak
In
ulation
this
problem
pap
requires
er
in
w
duction
e
the
consider
ert
the
H
b
;
oundary
deed
v
y
alue
url
problem

)
L

u
2
:=
L
curl
(
))
(
j
a
v
curl
L
u
(
)
)
:
+
space
A
url
u

)
=
equipp
f
with
in
follo

inner
;
duct
u
graph

(
t
;
=
)
0
:=
on

@

d
;
+
(1)

with
u

v
a
x
b
k
ounded
k
p
curl
olygonal
(
domain
;
in
)
R
:
2
tangen
.
comp
Here
t
curl

v
,
:=
a
2
ector
6
2
6
url
4

)
@
the
v
oundary
@

,
x
elongs
2
the
@
H
v
2
@
@
x
see
1
,
3
].
7
subspace
7
v
5
in
;
url
curl

)
u
v
:=
tangen
@
comp
u
t
2
@
@
is
x
b
1
H
@
url
u

).
1
ASCIPR
@
CNRS
x
aris
2
Univ
;
y
see
Building
e
91403
[17
y
].
FRANCE
The
rapettiscir
co
URL
eien
ttpwwscir
t
etti
matrix
w
A
w
is
supp
a
b
symmetric
the
uniformly
ean
p
unit
ositiv
under
e
tract
deite
ERBGT
matrix
b
alued
the
function
des
with

en
In
tries
du
A
F
ij
under
2
fund
L
478.
1
Couran
(
),
Institute
1
Mathematical

251
i
Street
j
Y

N
2,
USA
and
mail
a
.
2
h
L
yudutoselli
1
w
(
)
w
is
supp
a
in
p
b
ositiv
the
e
Mathematical
function
Program
b
the
ounded
Departmen
a
of
w
under
a
tract
y
GOR
from
zerofor
2
refer
F
Lagrange
RAPETTI
the
and
N
A
,
TOSELLI
the
F
of
or
in
an
Analogously
y
cal
D
ha

the

,
equations
w
static
e
metho
dee
st
the
non
bilinear
obtained
form
of
a
In
D
preconditioners
(
y
u
20
;
In
v
endency
)
e
:=
mo
Z
from
D
t
(
pap
a
ing
curl
of
u
conforming
curl
original
v
i
+

A
a
u
sides

v
v
b
)
ariables
d
the
x
and
;
,
u
of
;
e
v
7,
2
detailed
H
w
url
(3),
;
v

)
een
:
it
(2)
d
The
the
v
of
ariational
t
form
time
ulation
the
of
The
equation
build
(1)
Elemen
is
ETI
Find
elemen
u
metho
2
for
H
of
0
this
url
decomp
;
domains

)
:
suc
h
h
cal
that
elemen
a

of
(
con
u
onding
;
enforced
v
the
)
domain
=
algorithm
Z
b

and
f
is

b
v
solution
d
,
x
,
;
ds
v
from
2
een
H
[22
0
10
url
,
;
therein

)
5
:
pap
(3)
only
W
del
e
the
discretize
the
this
or
problem
has
using
and
edge
refer
elemen
Maxw
ts
go
also
for
kno
problem
wn
step
as
t
N
systems

edge
ed
ximation

and
elec
frequencyep
elemen
arising
ts
appro
see
ell
[24
of
].
is
These
iterativ
are
of
v
T
ector
In
alued
yp
ite
mortar
elemen
appro
ts
(1).
that
w
only
tro
ensure
solution
the
pro
con
y
tin
].
uit
h
y

of
in
the
erlapping
tangen
i
tial
1
comp
:
onen
On
t
do
across
a
the
matrix
common
the
side
discretization
of
i
adjacen

t
a
mesh
t
triangles
built
as
uit
is
solution
ph
the
ys
is
ically
y
required
ultipliers
for
terface
the
the
electric
b
and
original
magnetic
primal
lds
then
whic
solving
h
prob
are
equation
solutions
m
of
Sev
Maxw
v
ell
prop
equations
for
In
e
this
,
pap
,
er
,
w
].
e
e
consider
the
a
systems
mortar
appro
appro
e
ximation
osed
of
in
this
1
problem
2
The
11
com
,
putational
]
domain
the
is
a
partitioned
[6,
in
].
to
this
a
er
family
e
of
consider
non
mo
v
problem
erlapping
where
sub
dep
domains
on
and
time
indep
ariable
enden
on
t
frequency
triangulations
b
are
eliminated
in
w
tro
generically
duced
to
in
as
eac
ell
h
A
sub
o
domain
preconditioner
The
this
w
del
eak
is
con
st
tin
for
uit
eien
y
solution
of
linear
the
arising
tangen
the
tial
elemen
comp
appro
onen
of
t
problems
of
of
the
or
solution
enden

Voir icon more