15
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
15
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Sud
A
is
FETI
t
PRECONDITIONER
u
F
of
OR
),
TW
curl
O
ectors
DIMENSIONAL
Comm
EDGE
Applied
ELEMENT
of
APPR
2
O
v
XIMA
curl
TIONS
space
OF
MAXWELL
h
EQUA
elations
TIONS
URL
ON
1
NONA
b
TCHING
of
GRIDS
:=
FRANCESCA
RAPETTI
pro
v
AND
2
ANDREA
u
TOSELLI
b
y
[17
Abstract
anishing
A
;
class
Orsa
of
as
FETI
and
metho
the
ds
ork
for
as
the
t
mortar
has
appro
tangen
ximation
w
of
the
a
space
v
H
ector
(
ld
2
problem
H
in
the
t
norm
w
Z
o
Z
dimensions
;
is
u
in
tial
tro
of
duced
;
and
b
analyzed
(
Edge
The
elemen
;
t
onen
discretizations
y
of
9029
lo
,
w
Eail
est
This
degree
y
are
Con
con
Direction
sidered
CNRS
The
y
metho
Mercer
d
E
prop
This
osed
part
can
of
b
Con
e
domain
emplo
diameter
y
the
ed
to
with
.
geometrically
form
conforming
(1)
and
tro
nononforming
Hilb
partitions
url
Our
b
n
;
umerical
v
results
2
sho
curl
w
2
that
The
its
;
condition
ed
n
wing
um
and
b
u
er
curl
increases
u
only
x
with
curl
the
d
n
u
um
:=
b
u
er
The
of
onen
unkno
t
wns
v
in
H
eac
on
h
@
sub
to
domains
1
and
);
is
8
indep
of
enden
H
t
with
of
tial
the
on
n
denoted
um
0
b
er
P
of
ersit
sub
506,
domains
Cedex
and
.
the
rancescaap
size
ork
of
orted
the
Europ
problem
y
Key
TMR
w
y
ords
R
Edge
ternationnelles
elemen
rance
ts
PICS
Maxw
t
ell
Sciences
equations
New
domain
10012,
decomp
toselliimsyudu
osition
ttpwwath
FETI
ork
precondition
orted
ers
y
nonatc
Sciences
hing
U
grids
Energy
AMS
DEF
sub
The
ject
classiations
unit
F
and
N
is
N
unit
N
t
1.
its
In
oundary
tro
The
duction
eak
In
ulation
this
problem
pap
requires
er
in
w
duction
e
the
consider
ert
the
H
b
;
oundary
deed
v
y
alue
url
problem
)
L
u
2
:=
L
curl
(
))
(
j
a
v
curl
L
u
(
)
)
:
+
space
A
url
u
)
=
equipp
f
with
in
follo
inner
;
duct
u
graph
(
t
;
=
)
0
:=
on
@
d
;
+
(1)
with
u
v
a
x
b
k
ounded
k
p
curl
olygonal
(
domain
;
in
)
R
:
2
tangen
.
comp
Here
t
curl
v
,
:=
a
2
ector
6
2
6
url
4
)
@
the
v
oundary
@
,
x
elongs
2
the
@
H
v
2
@
@
x
see
1
,
3
].
7
subspace
7
v
5
in
;
url
curl
)
u
v
:=
tangen
@
comp
u
t
2
@
@
is
x
b
1
H
@
url
u
).
1
ASCIPR
@
CNRS
x
aris
2
Univ
;
y
see
Building
e
91403
[17
y
].
FRANCE
The
rapettiscir
co
URL
eien
ttpwwscir
t
etti
matrix
w
A
w
is
supp
a
b
symmetric
the
uniformly
ean
p
unit
ositiv
under
e
tract
deite
ERBGT
matrix
b
alued
the
function
des
with
en
In
tries
du
A
F
ij
under
2
fund
L
478.
1
Couran
(
),
Institute
1
Mathematical
251
i
Street
j
Y
N
2,
USA
and
mail
a
.
2
h
L
yudutoselli
1
w
(
)
w
is
supp
a
in
p
b
ositiv
the
e
Mathematical
function
Program
b
the
ounded
Departmen
a
of
w
under
a
tract
y
GOR
from
zerofor
2
refer
F
Lagrange
RAPETTI
the
and
N
A
,
TOSELLI
the
F
of
or
in
an
Analogously
y
cal
D
ha
the
,
equations
w
static
e
metho
dee
st
the
non
bilinear
obtained
form
of
a
In
D
preconditioners
(
y
u
20
;
In
v
endency
)
e
:=
mo
Z
from
D
t
(
pap
a
ing
curl
of
u
conforming
curl
original
v
i
+
A
a
u
sides
v
v
b
)
ariables
d
the
x
and
;
,
u
of
;
e
v
7,
2
detailed
H
w
url
(3),
;
v
)
een
:
it
(2)
d
The
the
v
of
ariational
t
form
time
ulation
the
of
The
equation
build
(1)
Elemen
is
ETI
Find
elemen
u
metho
2
for
H
of
0
this
url
decomp
;
domains
)
:
suc
h
h
cal
that
elemen
a
of
(
con
u
onding
;
enforced
v
the
)
domain
=
algorithm
Z
b
and
f
is
b
v
solution
d
,
x
,
;
ds
v
from
2
een
H
[22
0
10
url
,
;
therein
)
5
:
pap
(3)
only
W
del
e
the
discretize
the
this
or
problem
has
using
and
edge
refer
elemen
Maxw
ts
go
also
for
kno
problem
wn
step
as
t
N
systems
edge
ed
ximation
and
elec
frequencyep
elemen
arising
ts
appro
see
ell
[24
of
].
is
These
iterativ
are
of
v
T
ector
In
alued
yp
ite
mortar
elemen
appro
ts
(1).
that
w
only
tro
ensure
solution
the
pro
con
y
tin
].
uit
h
y
of
in
the
erlapping
tangen
i
tial
1
comp
:
onen
On
t
do
across
a
the
matrix
common
the
side
discretization
of
i
adjacen
t
a
mesh
t
triangles
built
as
uit
is
solution
ph
the
ys
is
ically
y
required
ultipliers
for
terface
the
the
electric
b
and
original
magnetic
primal
lds
then
whic
solving
h
prob
are
equation
solutions
m
of
Sev
Maxw
v
ell
prop
equations
for
In
e
this
,
pap
,
er
,
w
].
e
e
consider
the
a
systems
mortar
appro
appro
e
ximation
osed
of
in
this
1
problem
2
The
11
com
,
putational
]
domain
the
is
a
partitioned
[6,
in
].
to
this
a
er
family
e
of
consider
non
mo
v
problem
erlapping
where
sub
dep
domains
on
and
time
indep
ariable
enden
on
t
frequency
triangulations
b
are
eliminated
in
w
tro
generically
duced
to
in
as
eac
ell
h
A
sub
o
domain
preconditioner
The
this
w
del
eak
is
con
st
tin
for
uit
eien
y
solution
of
linear
the
arising
tangen
the
tial
elemen
comp
appro
onen
of
t
problems
of
of
the
or
solution
enden