A Comparative Introduction to XDG: The Linear Precedence Dimension

icon

48

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

48

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

A Comparative Introduction to XDG: The Linear Precedence Dimension Ralph Debusmann and Denys Duchier Programming Systems Lab, Saarland University, Saarbr ?ucken, Germany and ·Equipe Calligramme, LORIA, Nancy, France A Comparative Introduction to XDG: The Linear Precedence Dimension – p.1

  • zu schreiben

  • free word

  • can directly

  • maria promises

  • ·equipe calligramme

  • programming systems

  • german has

  • introduce many

  • saarland university

  • tag ?


Voir icon arrow

Publié par

Nombre de lectures

66

Langue

English

A Comparative Introduction to XDG: The
Linear Precedence Dimension
Ralph Debusmann
and
Denys Duchier
Programming Systems Lab, Saarland University, Saarbruc¤ ken, Germany
and
·
Equipe Calligramme, LORIA, Nancy, France
A Comparative Introduction to XDG: The Linear Precedence Dimension ? p.1This presentation

German has free word order

consequence: non-projective analyses, discontinuous
constituents

why dependency grammar? can directly and naturally
capture the non-projective analyses

but: so far, we do not restrict word order at all

question: how can we restrict word order in a declarative
way?
A Comparative Introduction to XDG: The Linear Precedence Dimension ? p.2Approaches to free word order

we will introduce the following approaches to handling free
word order:
1. Gazdar et al. (1985), Uszkoreit (1987): GPSG
2. Reape (1990, 1994), Kathol (1995, 2000): HPSG
3. Gerdes/Kahane (2001): DG
4. Duchier/Debusmann (2001): DG
A Comparative Introduction to XDG: The Linear Precedence Dimension ? p.3Many other approaches

we cannot introduce many other approaches for lack of time:

Becker/Rambow (1994): TAG

M ller (1999): HPSG

Br ker (1999): DG

Kruijff (2000): CG
A Comparative Introduction to XDG: The Linear Precedence Dimension ? p.4Scrambling example
1. canonical, continuous word order (no extraction):
(dass) Maria einen Roman zu schreiben verpricht.
(that) Maria a novel to write promises.
(that)Maria promises to write a novel.?
2. object NP extracted: scrambling (Ross 1967)
(dass) einen Roman Maria zu schreiben verspricht.
(that) a novel Maria to write promises.
(that)Maria promises to write a novel.?
A Comparative Introduction to XDG: The Linear Precedence Dimension ? p.5Example analysis (no scrambling)
S
NP VP V
verspricht
Maria NP V
Det N zu schreiben
einen Roman
A Comparative Introduction to XDG: The Linear Precedence Dimension ? p.6Example analysis (scrambling)
S
NP VP V
NP Maria V verspricht
Det N zu schreiben
einen Roman

problem for naive phrase structure-based approaches: VP
einen Roman zu schreiben is discontinuous
A Comparative Introduction to XDG: The Linear Precedence Dimension ? p.7GPSG

Gazdar et al. (1985)

idea is to separate:

Immediate Dominance (ID): NP!fDET; ADJ; Ng

Linear Precedence (LP): DET < ADJ < N

but: ID/LP distinction only for local phrase structure rules,
cannot handle scrambling (non-local)

idea: Uszkoreit (1987): atter phrase structure for German
A Comparative Introduction to XDG: The Linear Precedence Dimension ? p.8Flatter phrase structure
S
NP NP V V
verspricht
Det N Maria zu schreiben
einen Roman

ID: S!fNP; NP; V; Vg

LP: NP < V

but: we lose the syntactic dependencies (e.g. that zu
schreiben depends on verspricht)
A Comparative Introduction to XDG: The Linear Precedence Dimension ? p.9Reape: HPSG

Reape (1990, 1994)

two structures:
1. PS tree
2. WOD tree

WOD tree is a attening of the PS tree

PS tree: ID, WOD tree: LP
A Comparative Introduction to XDG: The Linear Precedence Dimension ? p.10

Voir icon more
Alternate Text