Stabilization of the incompressible 2D Euler equations in a simply connected domain utilizing the Lorentz force

icon

16

pages

icon

English

icon

Documents scolaires

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

16

pages

icon

English

icon

Documents scolaires

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Secondaire, Lycée, Terminale
Available online at R J. Math. Anal. Appl. 293 (2004) 389–404 Stabilization of the incompressible 2D Euler equations in a simply connected domain utilizing the Lorentz force Kim Dang Phung 17 rue Leonard Mafrand, 92320 Chatillon, France Received 29 October 2002 Submitted by M.C. Nucci Abstract In this paper, the null asymptotic stabilization of the 2D Euler equations of incompressible fluids in a simply connected bounded domain is investigated by utilizing the Lorentz force given by the Maxwell equations with Ohm's law. ? 2004 Elsevier Inc. All rights reserved. 1. Introduction We consider an electrically conducting, ideal incompressible fluid in a bounded domain ? with a smooth boundary ∂? , governed by the following equations: ? ? ? ? ? ? ? ? ? ? ? ? ? ∂tu + (u · ?)u = ??p + ?(E + u ? B) ? B in ? ? (0, T ), ?∂tE ? curlB + ?E = 0 in ? ? (0, T ), ∂tB + curlE = 0 in ? ? (0, T ), divE = 0, divB = 0, divu = 0 in ? ? (0, T ), E ? n = 0, B · n = 0, u · n = 0 on ∂? ? (0, T ), u(· ,0) =

  • ?∂te ?

  • asymptotic stabilization

  • inviscid fluid

  • then

  • field

  • fluid velocity

  • ¯b

  • u0 ?


Voir icon arrow

Publié par

Nombre de lectures

15

Langue

English

Available online at www.sciencedirect.com R
J. Math. Anal. Appl. 293 (2004) 389–404
www.elsevier.com/locate/jmaa
Stabilization of the incompressible 2D Euler equations in a simply connected domain utilizing the Lorentz force Kim Dang Phung 17 rue Leonard Mafrand, 92320 Chatillon, France Received 29 October 2002 Submitted by M.C. Nucci
Abstract In this paper, the null asymptotic stabilization of the 2D Euler equations of incompressible uids in a simply connected bounded domain is investigated by utilizing the Lorentz force given by the Maxwell equations with Ohm’s law. 2004 Elsevier Inc. All rights reserved.
1. Introduction We consider an electrically conducting, ideal incompressible uid in a bounded domain with a smooth boundary ∂ Ω , governed by the following equations: t u + (u · ∇ )u = −∇ p + σ (E + u B) B in × ( 0 , T ), ε∂ t E curl B + σ E = 0 in × ( 0 , T ), d t iv BE += cu0r , l E d = iv0 B i = n0 ,× d ( iv0 ,uT = ), 0 in × ( 0 , T ), (1) E n = 0 , B · n = 0 , u · n = 0 on ∂ Ω × ( 0 , T ), u( · , 0 ) = u 0 , E( · , 0 ) = E 0 , B( · , 0 ) = B 0 in Ω , where u is the uid velocity, p is the scalar pressure. The electromagnetic eld (E, B) is solution of Maxwell’s system with Ohm’s law where ε is the permittivity and σ the electric conductivity. We suppose that ε and σ are both two positive constants.
E-mail address: phung@cmla.ens-cachan.fr. 0022-247X/$ – see front matter 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2003.10.047
Voir icon more
Alternate Text