Stabilization of se ond order evolution equations

icon

26

pages

icon

English

icon

Documents scolaires

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

26

pages

icon

English

icon

Documents scolaires

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Secondaire, Lycée, Terminale
Stabilization of se ond order evolution equations with unbounded feedba k with time-dependent delay Emilia Fridman ? , Serge Ni aise † , Julie Valein ‡ Mar h 24, 2009 Abstra t We onsider abstra t se ond order evolution equations with unbounded feedba k with time-varying delay. Existen e results are obtained under some realisti assumptions. We prove the exponential de ay under some onditions by introdu ing an abstra t Lyapunov fun tional. Our abstra t framework is applied to the wave, to the beam and to the plate equations with boundary delays. Keywords se ond order evolution equations, wave equations, time-varying delay, stabilization, Lyapunov fun tional. 1 Introdu tion Time-delay often appears in many biologi al, ele tri al engineering systems and me hani al appli ations, and in many ases, delay is a sour e of instability [7?. In the ase of distributed parameter systems, even arbitrarily small delays in the feedba k may destabilize the system (see e.g. [5, 16, 24, 17?). The stability issue of systems with delay is, therefore, of theoreti al and pra ti al importan e. There are only a few works on Lyapunov-based te hnique for Partial Dif- ferential Equations (PDEs) with delay.

  • groups theory

  • delay

  • system

  • b?2 ?˙

  • self-adjoint positive operator

  • operator depends

  • lyapunov fun tional


Voir icon arrow

Publié par

Nombre de lectures

24

Langue

English

∗ † ‡



b
equations
The
with

un
artial
b
in
ounded
Hainaut

ortance.
k
the
with
equations
time-dep
Engineering,
enden
T
t
of
dela
y
y
on
Emilia
y
F
us,
ridman
some
ev

,
instabilit
Serge
,

FR
order
V
olution
,
Insti-
Julie
9
V
of
alein


a
Marc

h
Equations
24,
these
2009
onstant

and
W
de-
e
w

dela




order
ho
ev
viv
olution
viv,
equations
Cam
with
tut
un
V
b
F
ounded
V

V,
k
et
with
-
time-v
alein@univ-v
arying
y
dela
with
y
therefore,
.

Existence
are
results
w
are
apuno
obtained
for
under
feren
some
with

Most
assumptions.
orks
W
of
e
.
pro
y
v
onen
e
w
the
ed
exp
heat
onen
v
tial


and
y
b
under
dela
some
,

y
b
Stabilization
y
of
in
el
tro
ersit

el
an
Israel,

du
Ly
LAMA
apuno
2956,
v
Sciences
functional.
hniques
Our
F-59313

Cedex
framew

ork
ersit?
is
et
applied
br?sis,
to
CNRS
the
des
w
ec
a

v

e,
rance,
to
1
the
stabilit
b
issue
eam
systems
and
dela
to
is,
the
of
plate
and
equations
imp
with
There
b
only
oundary
few
dela
orks
ys.
Ly
Keyw
v-based
ords
hnique

P
order
Dif-
ev
tial
olution
(PDEs)
equations,
dela
w
.
a
of
v
w
e
analyze
equations,

time-v

arying
delays
dela
Th
y
stabilit
,

stabilization,
exp
Ly
tial
apuno
ounds
v
ere
functional.
riv
1
for
In
scalar
tro
and

a
Time-dela
e
y
with
often
t
app
ys
ears
with
in
hlet
man
oundary
y
without
biological,
y
electrical
[25
engineering
26
systems
Stabilit
and
and

y

Sc
applications,
ol
and
Electrical
in
T
man
A
y
Univ

y
dela
T
y
A
of
69978
Univ

de
is
ersit?
a
V

et
of
Hainaut
instabilit
br?sis,
y
V,

CNRS
In
Insti-
the
des

et
of
ec
distributed
of
parameter

systems,
-
ev

en
9
arbitrarily
rance,
small

dela
Univ
ys
de
in

the
du

Cam
k
LAMA
ma
FR
y
2956,
destabilize
tut
the
Sciences
system
T
(see
hniques
e.g.
V
[5
F-59313
,
V
16
Cedex
,
F
24
Julie.V
,

17
℄H
k.kH
(.,.) . A : D(A) → HH
1/2 1/2 1/2 ′H. V :=D(A ) A . D(A )
1/2D(A ) H.
i = 1, 2 Ui
k.kUi
1/2 ′(.,.) B ∈L(U , D(A ) ).U i ii

ω¨(t)+Aω(t)+B u (t)+B u (t−τ(t)) = 0, t> 0, 1 1 2 2
ω(0) =ω , ω˙(0) =ω ,0 1
 0u (t−τ(0)) =f (t−τ(0)), 0<t<τ(0),2
t ∈ [0,∞) τ(t) > 0 ω :
[0,∞)→ H ω˙ ω u ∈1
2 2L ([0, ∞), U ) u ∈L ([−τ, ∞), U )1 2 2
τ(t)
∃d< 1,∀t> 0, τ˙(t)≤d< 1,
∃M > 0,∀t> 0, 0<τ ≤τ(t)≤M.0
2,∞∀T > 0, τ ∈W ([0, T]).
ω
where
ternal
tly
in
acting
and
in
ts
b

satises

[19
b
in
e
example).
a
of
self-adjoin
ert
t
,
p
er,
ositiv
the
e
The
op
dela
erator
represen
with
,
a


b
in
22
v
time-v
erse
apuno
in
delays
t
y

order
Let
domain.
with
trol
systems
pap
olic
Ly
parab
e
linear
b
of
and
y
of
stabilit
time-v
The
b

state
b
time
e
means
the
y
domain
the
of
of
20
the
,
in
[17
In
in
22
found
as
Denote
of
b
ounded
y
with
e
that
b
stabilit

w
y
linear
dela

t


where
with
of
the
v
dual

space
een
of
ha
equations
time-v
e
equations
v
a
a
1-d
w
the
the
stabilit
for
is
obtained
dela
b
dela
y
applied
means
is
of
the
the
is
inner
ativ
pro
and


in
state

the

,
F
assume
urther,
6
for
the
t
an
Let
functions.
dela
dela
ys
linear
has

,
metho
let
via
b
21
een
in
b
and
e
with
a
stabilit
real
ks.
Hilb
un
ert
t
space
Moreo

e
h
olution
studied
of
stands
for
the
refer
t
v
2
of
to
mo
its
of
dual
distributed
space)
dela
with
e
norm
form
and
er
inner
this
pro
aim

functional.
denoted
apuno
resp
via
ectiv
[21
ely
studied
b
b
y
v
in
ys
and
arying
[8
oundary

with
in
e
and
v
the
w
y
heat
b
the
ely
ts
ectiv
time,
resp
y
denoted
The
,
for
and
the
let
arying

y
pro
ys
inner
oundary
and
to
norm
e
with
not
space
the
ert
of
Hilb
system,
real

a
the
e
deriv
b
e
frequency
this
Let
that
ork.
h
framew
ounded

is
W
ed
e
dela

on
the
erator
system
op
describ
that
ed

b
,
y
[3,
(1)

our
space,
t
Hilb
presen
are
us
input
let
The
on,
arying
going
y
Before
systems
equation).
of
e
(2)
v
the
a
d.
w
v
the
Ly
for


,
[21
6,
of
[3
results
analyzed
the
w
particular
(3)
in
time-varying
tains
PDEs

y
h
the


ks


b
y
in
dela
dela
arying

v
equation
time-
v
with
w
problems
assume
of
(4)

ev
large

quite
y
a
the
tain


to
to
e
order
er
in
Moreo
ossible
Most
p
the
as
equations
large
deling
as
vibrations
and


with
[19

to
with
similar
y
setting
b

written
an
the

(1),
to
is
will
for
b

e
eld.
iden
tiedui
∗u (t) = B ω˙(t)i i

∗ ∗ω¨(t)+Aω(t)+B B ω˙(t)+B B ω˙(t−τ(t)) = 0, t> 0, 1 21 2
ω(0) =ω , ω˙(0) =ω ,0 1
 ∗ 0B ω˙(t−τ(0)) =f (t−τ(0)), 0<t<τ(0).2

2 2∗ ∗∃0<α< 1−d, ∀u∈V, kB uk ≤αkB uk2 1U U2 1

(5)
system
system
and
op

lo
w

our
the
us
y
ell-p
a
follo
w
dissipativ
this
giv
in
ples,
The
that

Therefore

Hence
order
w
ev
is
olution
in
equations
e
without
3
delay
whic
or
particular
with
T

are
on-
system
stant
theory
delay
3
of
the
t
[9
yp
question
e
system.
(5)
e
ha
that

Voir icon more