26
pages
English
Documents scolaires
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
26
pages
English
Documents scolaires
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
∗ † ‡
∗
†
‡
b
equations
The
with
un
artial
b
in
ounded
Hainaut
ortance.
k
the
with
equations
time-dep
Engineering,
enden
T
t
of
dela
y
y
on
Emilia
y
F
us,
ridman
some
ev
,
instabilit
Serge
,
FR
order
V
olution
,
Insti-
Julie
9
V
of
alein
a
Marc
h
Equations
24,
these
2009
onstant
and
W
de-
e
w
dela
℄
order
ho
ev
viv
olution
viv,
equations
Cam
with
tut
un
V
b
F
ounded
V
V,
k
et
with
-
time-v
alein@univ-v
arying
y
dela
with
y
therefore,
.
Existence
are
results
w
are
apuno
obtained
for
under
feren
some
with
Most
assumptions.
orks
W
of
e
.
pro
y
v
onen
e
w
the
ed
exp
heat
onen
v
tial
and
y
b
under
dela
some
,
y
b
Stabilization
y
of
in
el
tro
ersit
el
an
Israel,
du
Ly
LAMA
apuno
2956,
v
Sciences
functional.
hniques
Our
F-59313
Cedex
framew
ork
ersit?
is
et
applied
br?sis,
to
CNRS
the
des
w
ec
a
v
e,
rance,
to
1
the
stabilit
b
issue
eam
systems
and
dela
to
is,
the
of
plate
and
equations
imp
with
There
b
only
oundary
few
dela
orks
ys.
Ly
Keyw
v-based
ords
hnique
P
order
Dif-
ev
tial
olution
(PDEs)
equations,
dela
w
.
a
of
v
w
e
analyze
equations,
time-v
arying
delays
dela
Th
y
stabilit
,
stabilization,
exp
Ly
tial
apuno
ounds
v
ere
functional.
riv
1
for
In
scalar
tro
and
a
Time-dela
e
y
with
often
t
app
ys
ears
with
in
hlet
man
oundary
y
without
biological,
y
electrical
[25
engineering
26
systems
Stabilit
and
and
y
Sc
applications,
ol
and
Electrical
in
T
man
A
y
Univ
y
dela
T
y
A
of
69978
Univ
de
is
ersit?
a
V
et
of
Hainaut
instabilit
br?sis,
y
V,
℄
CNRS
In
Insti-
the
des
et
of
ec
distributed
of
parameter
systems,
-
ev
en
9
arbitrarily
rance,
small
dela
Univ
ys
de
in
the
du
Cam
k
LAMA
ma
FR
y
2956,
destabilize
tut
the
Sciences
system
T
(see
hniques
e.g.
V
[5
F-59313
,
V
16
Cedex
,
F
24
Julie.V
,
17
℄H
k.kH
(.,.) . A : D(A) → HH
1/2 1/2 1/2 ′H. V :=D(A ) A . D(A )
1/2D(A ) H.
i = 1, 2 Ui
k.kUi
1/2 ′(.,.) B ∈L(U , D(A ) ).U i ii
ω¨(t)+Aω(t)+B u (t)+B u (t−τ(t)) = 0, t> 0, 1 1 2 2
ω(0) =ω , ω˙(0) =ω ,0 1
0u (t−τ(0)) =f (t−τ(0)), 0<t<τ(0),2
t ∈ [0,∞) τ(t) > 0 ω :
[0,∞)→ H ω˙ ω u ∈1
2 2L ([0, ∞), U ) u ∈L ([−τ, ∞), U )1 2 2
τ(t)
∃d< 1,∀t> 0, τ˙(t)≤d< 1,
∃M > 0,∀t> 0, 0<τ ≤τ(t)≤M.0
2,∞∀T > 0, τ ∈W ([0, T]).
ω
where
ternal
tly
in
acting
and
in
ts
b
satises
[19
b
in
e
example).
a
of
self-adjoin
ert
t
,
p
er,
ositiv
the
e
The
op
dela
erator
represen
with
,
a
b
in
22
v
time-v
erse
apuno
in
delays
t
y
order
Let
domain.
with
trol
systems
pap
olic
Ly
parab
e
linear
b
of
and
y
of
stabilit
time-v
The
b
℄
state
b
time
e
means
the
y
domain
the
of
of
20
the
,
in
[17
In
in
22
found
as
Denote
of
b
ounded
y
with
e
that
b
stabilit
w
y
linear
dela
t
where
with
of
the
v
dual
℄
space
een
of
ha
equations
time-v
e
equations
v
a
a
1-d
w
the
the
stabilit
for
is
obtained
dela
b
dela
y
applied
means
is
of
the
the
is
inner
ativ
pro
and
in
state
the
,
F
assume
urther,
6
for
the
t
an
Let
functions.
dela
dela
ys
linear
has
,
metho
let
via
b
21
een
in
b
and
e
with
a
stabilit
real
ks.
Hilb
un
ert
t
space
Moreo
e
h
olution
studied
of
stands
for
the
refer
t
v
2
of
to
mo
its
of
dual
distributed
space)
dela
with
e
norm
form
and
er
inner
this
pro
aim
functional.
denoted
apuno
resp
via
ectiv
[21
ely
studied
b
b
y
v
in
ys
and
arying
[8
oundary
℄
with
in
e
and
v
the
w
y
heat
b
the
ely
ts
ectiv
time,
resp
y
denoted
The
,
for
and
the
let
arying
y
pro
ys
inner
oundary
and
to
norm
e
with
not
space
the
ert
of
Hilb
system,
real
a
the
e
deriv
b
e
frequency
this
Let
that
ork.
h
framew
ounded
is
W
ed
e
dela
on
the
erator
system
op
describ
that
ed
℄
b
,
y
[3,
(1)
our
space,
t
Hilb
presen
are
us
input
let
The
on,
arying
going
y
Before
systems
equation).
of
e
(2)
v
the
a
d.
w
v
the
Ly
for
℄
℄
,
[21
6,
of
[3
results
analyzed
the
w
particular
(3)
in
time-varying
tains
PDEs
y
h
the
ks
b
y
in
dela
dela
arying
v
equation
time-
v
with
w
problems
assume
of
(4)
ev
large
quite
y
a
the
tain
℄
to
to
e
order
er
in
Moreo
ossible
Most
p
the
as
equations
large
deling
as
vibrations
and
℄
with
[19
to
with
similar
y
setting
b
written
an
the
(1),
to
is
will
for
b
e
eld.
iden
tiedui
∗u (t) = B ω˙(t)i i
∗ ∗ω¨(t)+Aω(t)+B B ω˙(t)+B B ω˙(t−τ(t)) = 0, t> 0, 1 21 2
ω(0) =ω , ω˙(0) =ω ,0 1
∗ 0B ω˙(t−τ(0)) =f (t−τ(0)), 0<t<τ(0).2
√
2 2∗ ∗∃0<α< 1−d, ∀u∈V, kB uk ≤αkB uk2 1U U2 1
(5)
system
system
and
op
lo
w
our
the
us
y
ell-p
a
follo
w
dissipativ
this
giv
in
ples,
The
that
Therefore
Hence
order
w
ev
is
olution
in
equations
e
without
3
delay
whic
or
particular
with
T
are
on-
system
stant
theory
delay
3
of
the
t
[9
yp
question
e
system.
(5)
e
ha
that