Niveau: Secondaire, Lycée, Première
PCSIB Annexe mathématique 2011-2012 Equations différentielles en physique Une équation différentielle est une équation reliant une fonction y d'une variable, la variable x et les dérivées de la fonction y. Le plus grand ordre des dérivées de y figurant dans l'équation est l'ordre de l'équation différentielle. La solution d'une équation différentielle doit toujours être jusitifiée par une identification précise du type de l'équation différentielle à résoudre. 1 Equation différentielle linéaire du 1er ordre à co- efficients constants Il s'agit d'une équation de la forme ay? + by = f(x) avec a et b deux constantes (réelles en physique), appelées coefficients de l'équation différen- tielle linéaire. La solution y(x) de l'équation ay? + by = f(x) s'écrit sous la forme : y(x) = yG(x) + yP (x) y(x) est la somme : – de la solution générale de l'équation sans second membre ou équation homogène (ay? + by = 0), notée yG ; – d'une solution particulière de l'équation complète notée yP . 1.1 Recherche de yG yG est solution de ay? + by = 0 : yG = Ae? bx a x 1.2 Recherche de yP Pour déterminer yP , la solution particulière de ay? + by = f(x), deux méthodes : – méthode de variation de la constante ; cf.
- dipôle rlc
- instant initial
- u0 ? avec u0
- equation différentielle linéaire
- coefficient constant
- échelon de tension des dipôles rc
- régime libre