IRF540N HEXFET® Power MOSFET

icon

8

pages

icon

English

icon

Documents scolaires

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

8

pages

icon

English

icon

Documents scolaires

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Secondaire, Lycée, Terminale
IRF540N HEXFET® Power MOSFET PD - 91341A S D G VDSS = 100V RDS(on) = 0.052? ID = 33A TO-220AB 5/13/98 Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 33 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 23 A IDM Pulsed Drain Current ? 110 PD @TC = 25°C Power Dissipation 140 W Linear Derating Factor 0.91 W/°C VGS Gate-to-Source Voltage ± 20 V EAS Single Pulse Avalanche Energy? 300 mJ IAR Avalanche Current? 16 A EAR Repetitive Avalanche Energy? 14 mJ dv/dt Peak Diode Recovery dv/dt ? 5.0 V/ns TJ Operating Junction and -55 to + 175 TSTG Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) °C Mounting torque, 6-32 or M3 srew 10 lbf•in (1.1N•m) Absolute Maximum Ratings Parameter Typ. Max. Units R?JC Junction-to-Case ––– 1.1 R?CS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W R?JA Junction-to-Ambient ––– 62 Thermal Resistance Description Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area.

  • units conditions

  • tj ≤

  • source current

  • drain current

  • fully avalanche

  • thermal response

  • diode forward

  • typical output


Voir icon arrow

Publié par

Langue

English

lllllAdvanced Process Technology
Dynamic dv/dt Rating
175°C Operating
Fast Switching
Fully Avalanche Rated
Description
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use
in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220
contribute to its wide acceptance throughout the
industry.
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°CContinuous Drain Current, V
GS
@ 10V
I
D
@ T
C
= 100°CContinuous Drain Current, V
GS
@ 10V
I
DM
Pulsed Drain Current
Q
P
D
@T
C
= 25°CPower Dissipation
Linear Derating Factor
V
GS
Gate-to-Source Voltage
E
AS
Single Pulse Avalanche Energy
R
I
AR
Avalanche Current
Q
E
AR
Repetitive Avalanche Energy
Q
dv/dtPeak Diode Recovery dv/dt
S
T
J
Operating Junction and
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 srew
Thermal Resistance
Parameter
R
q
JC
Junction-to-Case
R
q
CS
Case-to-Sink, Flat, Greased Surface
R
q
JA
Junction-to-Ambient

G

PD - 91341A
IRF540N
HEXFET
®
Power MOSFET
DV
DSS
= 100V
R
DS(on)
= 0.052
W
S
I
D
= 33A

TO-220AB
.xaM333201104119.002 ± 00361410.5-55 to + 175
300 (1.6mm from case )
10 lbfin (1.1Nm)
Typ.Max.
1.1
0.50
26

stinUAWC°/WVJmAJmsn/VC°stinUW/C°5/13/98

IRF540N
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
ParameterMin.Typ.Max.Units

Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage100V
GS
V = 0V, I
D
= 250µA
D
V
(BR)DSS
/
D
T
J
Breakdown Voltage Temp. Coefficient0.11V/°CReference to 25°C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance0.052
W
V
GS
= 10V, I
D
= 16A
T
V
GS(th)
Gate Threshold Voltage2.04.0V
D
V
S
= V
GS
, I
D
= 250µA
g
fs
Forward Transconductance11S
DS
V = 50V, I
D
= 16A
25V = 100V, V = 0V
I
DSS
Drain-to-Source Leakage Current250µA
DDS
V
S
= 80V, V
GSG

S
= 0V, T
J
= 150°C
Gate-to-Source Forward Leakage100
GS
V = 20V
I
GSS
Gate-to-Source Reverse Leakage-100nAV
GS
= -20V
Q
g
Total Gate Charge94
D
I= 16A
Q
gs
Gate-to-Source Charge15nC
DS
V = 80V
Q
gd
Gate-to-Drain ("Miller") Charge43
GS
V = 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time8.2
DD
V = 50V
t
r
Rise Time39
D
I= 16A
t
d(off)
Turn-Off Delay Time44ns
G
R= 5.1
W
t
f
Fall Time33
D
R= 3.0
W∃
See Fig. 10
T
DL
D
Internal Drain Inductance4.5B6emtwm e(e0.n2 l5eian.d),
nHfrom package
G
L
S
Internal Source Inductance7.5and center of die contact
S
C
iss
Input Capacitance1400
GS
V = 0V
C
oss
Output Capacitance330pF
DS
V = 25V
C
rss
Reverse Transfer Capacitance170 = 1.0MHz, See Fig. 5

TSource-Drain Ratings and Characteristics
ParameterMin.Typ.Max.Units

Conditions
I
S
Continuous Source Current33MOSFET symbol
D
(Body Diode)Ashowing the
I
SM
Pulsed Source Current110integral reverse
G
(Body Diode)
QV
p-n junction diode.
S
V
SD
Diode Forward Voltage1.3V
J
T= 25°C, I
S
= 16A, V
GS
= 0V
T
t
rr
Reverse Recovery Time170250ns
J
T = 25°C, I
F
= 16A
Q
rr
Reverse RecoveryCharge1.11.6µCdi/dt = 100A/µ

s
T
t
on
Forward Turn-On TimeIntrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)

Notes:
Q
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
R
Starting T
J
= 25°C, L = 2.0mH
R
G
= 25
W
, I
AS
= 16A. (See Figure 12)
.

S
I
SD
£
16A, di/dt
£
210A/µs, V
DD
£
V
(BR)DSS
,
T
J
£
175°C
Pulse width
£
300µs; duty cycle
£
2%

T
0001 VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
001

01

V5.4

2T 0
C
µ=s 2P5U°CLSE WIDTH
10.1110100
A
V D S , Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics

0001

001T
J
= 25°C
T
J
= 175°C
01 V
D

S
= 50V
1
20µs PULSE WIDTH
45678910
A
V
G

S
, Gate-to-Source Voltage (V)
Fig 3.
Typical Transfer Characteristics

0001 VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
001

FRI

#10
4.5V

"N T2
C
0 µ=s 1P7U5°LCSE WIDTH
10.1110100
A
V D S , Drain-to-Source Voltage (V)
Fig 2.
Typical Output Characteristics

3.0
I
D
= 27A
5.20.25.10.15.00.0
V
G

S
= 10V
A-60-40-20020406080100120140160180
T
J
, Junction Temperature (°C)
Fig 4.
Normalized On-Resistance
Vs. Temperature

IRF540N

0042V = 0V, f = 1MHz
SGC =C +C ,C SHORTED
iss




gs




gd





ds
C = C
rss


gd
0002 CC =C + C
ssioss



ds


gd
00610021 Csso008 Cssr0040A110100
V , Drain-to-Source Voltage (V)
SDFig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage

0001

001T
J
= 175°C
T
J
= 25°C
10
V
G

S
= 0V
A
0.40.81.21.62.0
V
S

D
, Source-to-Drain Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage

V = 80V
SD V = 50V
SD V = 20V
SD

20
I
D
= 16A
612184 FOR TEST CIRCUIT
0
SEE FIGURE 13
A
020406080100
Q
G
, Total Gate Charge (nC)
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage

0001 OPERATION IN THIS AREA LIMITED
BY R
DS(on)

010

sµ01sµ00101sm1 T
C
= 25°C
T
J
= 175°C
10ms
1
Single Pulse
A
1101001000
V
D

S
, Drain-to-Source Voltage (V)
Fig 8.
Maximum Safe Operating Area

53035202510150255075100125150175
T
C
, Case Temperature( ° C)
Fig 9.
Maximum Drain Current Vs.
Case Temperature

01

"#NFRIRDVSDV
GS
D.U.T.
RG+VDD-V01DPuutlsy e FWacitdotrh
££ 01& 1
µ

s
%
Fig 10a.
Switching Time Test Circuit
VSD%09

%01VSGt
d(on)
t
r
t
d(off)
t
f
Fig 10b.
Switching Time Waveforms

1 D = 0.50
02.00.10P
DM
0.10.05t
1
20.0t0.01(THESRINMGALLE RPEUSLPSOENSE)
2
Notes:
1. Duty factor D =t
1
/ t
2
2. Peak T
J
=P
DM
x Z
thJC
+ T
C
10.00.000010.00010.0010.010.1 1
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRF540N

LVSDD.U.T.
R+GVDD-10 V
I
AS
t
p
0.01
W
Fig 12a.
Unclamped Inductive Test Circuit
V
(BR)DSS
tpVDD

VSD

ISAFig 12b.
Unclamped Inductive Waveforms

QGV 01Q
GS
Q
GD
VGCharge
Fig 13a.
Basic Gate Charge Waveform

I
DTOP 6.6A
11A
BOTTOM 16A

0

Voir icon more
Alternate Text