IRF530N HEXFET® Power MOSFET

icon

9

pages

icon

English

icon

Documents scolaires

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

9

pages

icon

English

icon

Documents scolaires

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Secondaire, Lycée, Terminale
IRF530N HEXFET® Power MOSFET PD - 91351A S D G VDSS = 100V RDS(on) = 0.11? ID = 17A TO-220AB 5/13/98 Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 17 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 12 A IDM Pulsed Drain Current ? 60 PD @TC = 25°C Power Dissipation 79 W Linear Derating Factor 0.53 W/°C VGS Gate-to-Source Voltage ± 20 V EAS Single Pulse Avalanche Energy? 150 mJ IAR Avalanche Current? 9.0 A EAR Repetitive Avalanche Energy? 7.9 mJ dv/dt Peak Diode Recovery dv/dt ? 5.0 V/ns TJ Operating Junction and -55 to + 175 TSTG Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) °C Mounting torque, 6-32 or M3 srew 10 lbf•in (1.1N•m) Absolute Maximum Ratings Parameter Typ. Max. Units R?JC Junction-to-Case ––– 1.9 R?CS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W R?JA Junction-to-Ambient ––– 62 Thermal Resistance Description Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area.

  • units conditions

  • tj ≤

  • source current

  • body diode

  • drain current

  • thermal response

  • avalanche energy?

  • typical output


Voir icon arrow

Publié par

Langue

English

lllllAdvanced Process Technology
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Fully Avalanche Rated
Description
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use
in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220
contribute to its wide acceptance throughout the
industry.
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°CContinuous Drain Current, V
GS
@ 10V
I
D
@ T
C
= 100°CContinuous Drain Current, V
GS
@ 10V
I
DM
Pulsed Drain Current
Q
P
D
@T
C
= 25°CPower Dissipation
Linear Derating Factor
V
GS
Gate-to-Source Voltage
E
AS
Single Pulse Avalanche Energy
R
I
AR
Avalanche Current
Q
E
AR
Repetitive Avalanche Energy
Q
dv/dtPeak Diode Recovery dv/dt
S
T
J
Operating Junction and
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 srew
Thermal Resistance
Parameter
R
q
JC
Junction-to-Case
R
q
CS
Case-to-Sink, Flat, Greased Surface
R
q
JA
Junction-to-Ambient

G

PD - 91351A
IRF530N
HEXFET
®
Power MOSFET
DV
DSS
= 100V
R
DS(on)
= 0.11
W
S
I
D
= 17A

TO-220AB
.xaM7121069735.002 ± 0510.99.70.5-55 to + 175
300 (1.6mm from case )
10 lbfin (1.1Nm)
Typ.Max.
1.9
0.50
26

stinUAWC°/WVJmAJmsn/VC°stinUW/C°5/13/98

IRF530N

Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
ParameterMin.Typ.Max.Units

Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage100V
GS
V = 0V, I
D
= 250µA
D
V
(BR)DSS
/
D
T
J
Breakdown Voltage Temp. Coefficient0.12V/°CReference to 25°C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance0.11
W
V
GS
= 10V, I
D
= 9.0A
T
V
GS(th)
Gate Threshold Voltage2.04.0V
D
V
S
= V
GS
, I
D
= 250µA
g
fs
Forward Transconductance6.4S
DS
V = 50V, I
D
= 9.0A
25V
DS
= 100V, V
GS
= 0V
I
DSS
Drain-to-Source Leakage Current250µA
DS
V = 80V, V
GS
= 0V, T
J
= 150°C
I
GSS
Gate-to-Source Forward Leakage100nA
GS
V = 20V
Gate-to-Source Reverse Leakage-100V
GS
= -20V
Q
g
Total Gate Charge44
D
I= 9.0A
Q
gs
Gate-to-Source Charge6.2nC
DS
V = 80V
Q
gd
Gate-to-Drain ("Miller") Charge21
GS
V = 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time6.4
DD
V = 50V
t
r
Rise Time27
D
I= 9.0A
t
d(off)
Turn-Off Delay Time37ns
G
R= 12
W
t
f
Fall Time25
D
R= 5.5
W∃
See Fig. 10
T
DL
D
Internal Drain Inductance4.56Bmetmw e(e0.n2 l5eian.d),
nHfrom package
G
L
S
Internal Source Inductance7.5and center of die contact
S
C
iss
Input Capacitance640
GS
V = 0V
C
oss
Output Capacitance160pF
DS
V = 25V
C
rss
Reverse Transfer Capacitance88 = 1.0MHz, See Fig. 5

TSource-Drain Ratings and Characteristics
ParameterMin.Typ.Max.Units

Conditions
I
S
Continuous Source Current17MOSFET symbol
D
(Body Diode)Ashowing the
I
SM
Pulsed Source Current60integral reverse
G
(Body Diode)
Q
p-n junction diode.
S
V
SD
Diode Forward Voltage1.3V
J
T= 25°C, I
S
= 9.0A, V
GS
= 0V
t
rr
Reverse Recovery Time130190ns
J
T = 25°C, I
F
= 9.0A
Q
rr
Reverse RecoveryCharge650970nCdi/dt = 100A/µ

s
T

Notes:
Q
Repetitive rating; pulse width limited by
S
I
SD
£
9.0A, di/dt
£
520A/µs, V
DD
£
V
(BR)DSS
,
max. junction temperature. ( See fig. 11 ) T
J
£
175°C
R
V
DD
= 25V, starting T
J
= 25°C, L = 3.1mH
T
Pulse width
£
300µs; duty cycle
£
2%.
R
G
= 25
W
, I
AS
= 9.0A. (See Figure 12)

T
001 VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V

01

V5.4

T2 0 µ=s 2P5U°LCSE WIDTH
JA10.1110100
V D S , Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics

001T
J
= 25°C
T
J
= 175°C
01

2V0
D
µ
S
s= P 5U0LVSE WIDTH
145678910
A
V
G

S
, Gate-to-Source Voltage (V)
Fig 3.
Typical Transfer Characteristics

001 VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V

01

FRI

#V5.4

!N T2 0 µ=s 1P7U5L°SCE WIDTH
J10.1110100
A
V D S , Drain-to-Source Voltage (V)
Fig 2.
Typical Output Characteristics

3.0
I
D
= 15A
5.20.25.10.15.00.0
V
G

S
= 10V
-60-40-20020406080100120140160180
A
T
J
, Junction Temperature (°C)
Fig 4.
Normalized On-Resistance
Vs. Temperature

IRF530N

0021V = 0V, f = 1MHz
SGC =C +C ,C SHORTED
iss




gs




gd



ds
C = C
rss


gd
0001C =C + C
oss



ds

gd
Cssi008006 Csso004 Cssr0020A110100
V , Drain-to-Source Voltage (V)
SDFig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage

001

T
J
= 175°C
01T
J
= 25°C

V
G

S
= 0V
10.40.60.81.01.21.41.6
A
V
S

D
, Source-to-Drain Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage

20
I
D
= 9.0A
V
D

S
= 80V
V
D

S
= 50V
16
V
D

S
= 20V
2184 F OSRE ET EFISGTU CRIER C13UIT
0A051015202530354045
Q
G
, Total Gate Charge (nC)
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage

0001 OPERATION IN THIS AREA LIMITED
BY R
DS(on)

00101

sµ01sµ001

T
C
= 25°C
1ms
T
J
= 175°C
1
Single Pulse
10ms
A1101001000
V
D

S
, Drain-to-Source Voltage (V)
Fig 8.
Maximum Safe Operating Area

0251105

0255075100125150175
T
C
, Case Temperature( ° C)
Fig 9.
Maximum Drain Current Vs.
Case Temperature
01

1D = 0.50
02.01.0050.00.10.02SINGLE PULSE
0.01(THERMAL RESPONSE)

!#NFRIRDVSDV
GS
D.U.T.
RG+VDD-V01DPuutlsy eF aWcitdotrh
££ 01& 1
µ
%
s
Fig 10a.
Switching Time Test Circuit
VSD%09

%01VSGt
d(on)
t
r
t
d(off)
t
f
Fig 10b.
Switching Time Waveforms

PMDt1t2Notes:
1. Duty factor D =t
1
/ t
2
2. Peak T
J
=P
DM
x Z
thJC
+ T
C
10.00.000010.00010.0010.010.1 1
t
1
, Rectangular Pulse Duration (sec)

Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRF530N

LVSDD.U.T.
R+GVDD-10 V
I
AS
t
p
0.01
W
Fig 12a.
Unclamped Inductive Test Circuit
V
(BR)DSS
tpVDD

VSD

ISAFig 12b.
Unclamped Inductive Waveforms

QGV 01Q
GS
Q
GD
VGCharge
Fig 13a.
Basic Gate Charge Waveform

I
DTOP 3.7A
6.4A
BOTTOM 9.0A

053003052002051001050
V
D

D
= 25V
A
255075100125150175
Starting T
J
, Junction Temperature (°C)<

Voir icon more
Alternate Text