66
pages
English
Documents scolaires
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
66
pages
English
Documents scolaires
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
oratoire
i
lik
Construction
generally
of
a
93430
minimal
C
uniquely
ergo
are
CNRS
homeomorphisms
Orsa
on
a
manifolds:
the
oin
Denjo
t.
y-Rees
realisabilit
?
hnique
Sud,
F.
B
math
al
eguin
some
y
some
,
tor
S.
whic
Cro
the
visier
oks
z
the
and
b
F.
to
Le
h
Roux
y
x
37B05,
17th
ematiques,
Ma
Cedex,
y
Analyse,
2006
Univ.
x
In
P
[23
rance.
℄
opy.
Mary
giv
Rees
R
has
manifold
omorphism
a
a
minimal
w
homeomorphism
homeomorphism
of
\lo
the
R
2-torus
ological
with
and
p
e"
os-
C
itiv
viewp
e
top
seen
ological
answ
en
follo
trop
question:
y
.
ted
This
on
homeomorphism
f
y
is
math
obtained
P
b
Orsa
y
rance.
Lab
hing
the
et
aris
of
F
an
oratoire
irrational
ematiques,
rotation
Sud,
R
Cedex,
.
W
entr
e
More
impro
,
v
en
e
homeomorphism
Rees
of
allo
and
wing
home-
to
h
start
of
with
Can
an
set,
y
e
homeomorphism
a
R
f
instead
h
of
oks
an
e"
irrational
from
rotation
top
and
viewp
to
t
\lo
trol
lik
precisely
R
the
h
measurable
from
measurable
of
oin
f
This
.
This
e
yields
as
in
partial
particular
er
the
the
follo
wing
wing
y
result:
whic
A
measurable
ny
systems
represen
omp
b
act
homeomorphisms
manifold
manifolds
of
AMS
dimension
37E30,
d
37B40.
Lab
2
de
which
Univ.
arries
aris
a
91405
minimal
y
uniquely
F
er
z
go
-
oratoire
home
G
omorphism
eom
also
etrie
Applications,
arries
P
a
13,
minimal
Villetaneuse,
uniquely
rance.
er
Lab
go
de
home
Univ.
omorphism
aris
with
91405
p
y
ositive
F
top
olo
arXiv:math.DS/0605438 v1 16 May 2006.
Con
6.2
ten
.
ts
.
1
5
In
the
tro
.
.
1
of
1.1
.
Denjo
B
y-Rees
32
.
hnique
n
.
.
.
ransitivit
.
.
.
.
.
.
26
.
.
.
.
.
5
.
.
.
.
.
.
.
.
.
.
.
.
35
.
.
.
otheses
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
otheses
1.2
.
.
ergo
.
4
homeomorphisms
.
with
6.3
p
.
ositiv
.
e
General
top
H
ological
.
en
C
trop
.
y
.
.
.
.
.
.
.
.
y
.
.
1
.
1.3
.
Realising
.
measurable
.
B
systems
.
as
.
homeomorphisms
.
on
in
manifolds
Can
2
.
1.4
.
A
.
more
.
general
B
statemen
.
t
.
.
.
.
.
.
of
.
.
.
.
.
.
.
27
.
realisation
.
2
.
.
.
6
.
the
.
.
.
.
.
.
.
1
.
6
.
.
.
.
.
.
.
yp
.
.
.
.
.
.
.
Insertion
.
of
.
7.1
.
4
1.5
.
Outline
.
of
35
Denjo
;
y-Rees
.
.
hnique
.
.
.
.
;
.
.
.
.
.
.
.
.
.
4
.
,
.
4.1
.
4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4.2
.
yp
.
.
.
.
.
.
.
.
6
.
1.6
.
.
of
tor
the
bres
pap
5.1
er
set
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Hyp
.
;
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5.3
.
yp
.
;
.
.
.
.
.
.
.
.
.
.
.
.
.
Construction
.
n
.
h
9
1
A
4
Construction
6
of
.
a
.
Can
pro
tor
Denition
set
pro
K
.
11
.
2
.
.
.
t
.
Can
otheses
tor
2
sets
5
11
preserv
2.1
.
Denitions
.
.
.
.
.
.
.
.
.
.
of
.
B
.
.
.
.
.
.
.
.
.
.
.
.
.
33
.
the
.
the
.
35
.
heme
.
.
)
.
and
.
)
.
.
.
.
.
.
.
.
.
.
.
.
.
Hyp
.
;
.
;
.
.
.
.
.
.
.
.
.
.
.
.
.
.
11
.
2.2
2
Hyp
3
otheses
.
A
.
1
.
;
.
2
.
;
.
3
.
.
.
.
23
.
T
.
y
.
minimalit
.
25
.
Hyp
.
B
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
25
.
Consequences
.
h
.
othesis
.
4
.
.
.
.
12
.
2.3
.
Consequences
.
of
.
h
.
yp
.
otheses
.
A
.
1
.
;
.
2
25
;
Can
3
sets
.
the
.
of
.
26
.
The
.
tor
.
K
.
C
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5.2
12
otheses
2.4
5
Construction
6
of
.
the
.
Can
.
tor
.
set
.
K
.
:
.
realisation
.
of
.
h
.
yp
.
otheses
.
A
.
1
.
;
.
2
.
;
27
3
Consequences
.
h
.
otheses
.
5
.
6
.
.
14
.
B
.
Blo
.
wing-up
.
of
.
the
.
orbit
.
of
.
K
.
20
.
3
.
General
5.4
sc
of
heme
M
20
's:
3.1
of
The
yp
B
of
;
homeomorphisms
;
(
;
M
;
n
.
)
.
n
.
.
1
28
,
Extraction
(
n
6.1
)
of
n
extraction
2
N
.
and
.
(
.
g
.
n
.
)
.
n
.
2
.
N
.
.
.
.
.
.
32
.
Hyp
.
B
20
;
3.2
;
Hyp
;
otheses
;
B
are
1
ed
;
.
2
.
;
.
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
33
.
Realisation
.
h
.
othesis
.
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
C
.
of
.
desired
.
in
.
bres
.
.
7
20
sc
3.3
35
Main
The
(
of
k
h
k
yp
1
otheses
(
B
k
1
k
;
1
2
.
;
.
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7.2
.
otheses
.
1
.
2
.
3
.