Constru tion of urious minimal uniquely ergodi

icon

66

pages

icon

English

icon

Documents scolaires

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

66

pages

icon

English

icon

Documents scolaires

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Secondaire, Lycée, Terminale
ar X iv :m at h. D S/ 06 05 43 8 v1 16 M ay 2 00 6 Constru tion of urious minimal uniquely ergodi homeomorphisms on manifolds: the Denjoy-Rees te hnique F. Beguin y , S. Crovisier z and F. Le Roux x 17th May 2006 Abstra t In [23?, Mary Rees has onstru ted a minimal homeomorphism of the 2-torus with pos- itive topologi al entropy. This homeomorphism f is obtained by enri hing the dynami s of an irrational rotation R. We improve Rees onstru tion, allowing to start with any homeomorphism R instead of an irrational rotation and to ontrol pre isely the measurable dynami s of f . This yields in parti ular the following result: Any ompa t manifold of dimension d 2 whi h arries a minimal uniquely ergodi homeomorphism also arries a minimal uniquely ergodi homeomorphism with positive topologi al entropy. More generally, given some homeomorphism R of a ( ompa t) manifold and some home- omorphism h C of a Cantor set, we onstru t a homeomorphism f whi h \looks like R from the topologi al viewpoint and \looks like R h C from the measurable viewpoint.

  • topologi al

  • ergodi homeomorphisms

  • minimal homeomorphism

  • minimal uniquely

  • constru tion

  • ting examples

  • stri tly

  • tion pro

  • measurable dynami


Voir icon arrow

Publié par

Nombre de lectures

11

Langue

English

oratoire
i
lik
Construction
generally
of
a

93430
minimal
C
uniquely

ergo
are

CNRS
homeomorphisms
Orsa
on
a
manifolds:

the
oin
Denjo
t.
y-Rees
realisabilit

?
hnique
Sud,
F.

B
math

al
eguin
some
y
some
,
tor
S.
whic
Cro
the
visier
oks
z
the
and
b
F.
to
Le
h
Roux
y
x
37B05,
17th
ematiques,
Ma
Cedex,
y
Analyse,
2006
Univ.

x
In
P
[23
rance.

opy.
Mary
giv
Rees
R
has
manifold

omorphism
a
a
minimal
w
homeomorphism
homeomorphism
of
\lo
the
R
2-torus
ological
with
and
p
e"
os-
C
itiv
viewp
e

top
seen
ological
answ
en
follo
trop
question:
y

.
ted
This
on
homeomorphism

f
y
is
math
obtained
P
b
Orsa
y
rance.

Lab
hing

the
et

aris
of
F
an
oratoire
irrational
ematiques,
rotation
Sud,
R
Cedex,
.

W
entr
e
More
impro
,
v
en
e
homeomorphism
Rees
of


allo
and
wing
home-
to
h
start
of
with
Can
an
set,
y
e
homeomorphism
a
R
f
instead
h
of
oks
an
e"
irrational
from
rotation
top
and
viewp
to
t

\lo
trol
lik
precisely
R
the
h
measurable
from

measurable
of
oin
f
This
.

This
e
yields
as
in
partial
particular
er
the
the
follo
wing
wing
y
result:
whic
A
measurable
ny
systems

represen
omp
b
act
homeomorphisms
manifold
manifolds
of
AMS
dimension
37E30,
d
37B40.

Lab
2
de
which


Univ.
arries
aris
a
91405
minimal
y
uniquely
F
er
z
go
-

oratoire
home
G
omorphism
eom
also
etrie

Applications,
arries
P
a
13,
minimal
Villetaneuse,
uniquely
rance.
er
Lab
go
de


home
Univ.
omorphism
aris
with
91405
p
y
ositive
F
top
olo
arXiv:math.DS/0605438 v1 16 May 2006.
Con
6.2
ten
.
ts
.
1
5
In
the
tro
.

.
1
of
1.1
.
Denjo
B
y-Rees
32

.
hnique
n
.
.
.
ransitivit
.
.
.
.
.

.
26
.
.
.
.
.
5
.
.
.
.
.
.
.

.
.
.
.
.
35
.
.
.
otheses
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
otheses
1.2
.

.
ergo
.

4
homeomorphisms
.
with
6.3
p
.
ositiv
.
e
General
top
H
ological
.
en
C
trop
.
y
.
.
.
.
.
.
.
.
y
.
.
1
.
1.3
.
Realising
.
measurable
.

B
systems
.
as
.
homeomorphisms
.
on
in
manifolds
Can
2
.
1.4
.
A
.
more
.
general
B
statemen
.
t
.
.
.
.
.
.
of
.
.
.
.
.
.
.
27
.
realisation
.
2
.
.
.
6
.
the
.
.
.
.
.
.
.
1
.
6
.
.
.
.
.
.
.
yp
.
.
.
.
.
.
.
Insertion
.
of
.
7.1
.

4

1.5
.
Outline
.
of
35
Denjo
;
y-Rees
.

.
hnique
.
.
.
.
;
.
.
.
.
.
.
.
.
.
4
.
,
.
4.1
.
4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4.2
.
yp
.
.
.
.
.
.
.
.
6
.
1.6
.

.
of
tor
the
bres
pap
5.1
er
set
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Hyp
.
;
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5.3
.
yp
.
;
.
.
.
.
.
.
.
.
.
.
.
.
.
Construction
.
n
.
h
9
1
A
4
Construction
6
of
.
a
.
Can
pro
tor
Denition
set
pro
K
.
11
.
2
.

.

.
t
.
Can
otheses
tor
2
sets
5
11
preserv
2.1
.
Denitions
.
.
.
.
.
.
.
.
.
.
of
.
B
.
.
.
.
.
.
.
.
.
.
.
.
.
33
.
the
.
the
.
35
.
heme
.

.
)
.
and
.
)
.
.
.
.
.
.
.
.
.
.
.
.
.
Hyp
.
;
.
;
.
.
.
.
.
.
.
.
.
.
.
.
.
.
11
.
2.2
2
Hyp
3
otheses
.
A
.
1
.
;
.
2
.
;
.
3
.
.
.
.
23
.
T
.
y
.
minimalit
.
25
.
Hyp
.
B
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
25
.
Consequences
.
h
.
othesis
.
4
.
.
.
.
12
.
2.3
.
Consequences
.
of
.
h
.
yp
.
otheses
.
A
.
1
.
;
.
2
25
;
Can
3
sets
.
the
.
of
.
26
.
The
.
tor
.
K
.
C
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5.2
12
otheses
2.4
5
Construction
6
of
.
the
.
Can
.
tor
.
set
.
K
.
:
.
realisation
.
of
.
h
.
yp
.
otheses
.
A
.
1
.
;
.
2
.
;
27
3
Consequences
.
h
.
otheses
.
5
.
6
.
.
14
.
B
.
Blo
.
wing-up
.
of
.
the
.
orbit
.
of
.
K
.
20
.
3
.
General
5.4
sc
of
heme
M
20
's:
3.1
of
The
yp

B
of
;
homeomorphisms
;
(
;
M
;
n
.
)
.
n
.

.
1
28
,
Extraction
(

n
6.1
)
of
n
extraction
2

N
.
and
.
(
.
g
.
n
.
)
.
n
.
2
.
N
.
.
.
.
.
.
32
.
Hyp
.
B
20
;
3.2
;
Hyp
;
otheses
;
B
are
1
ed
;
.
2
.
;
.
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
33
.
Realisation
.
h
.
othesis
.
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
C
.
of
.
desired
.
in
.
bres
.

.
7
20
sc
3.3
35
Main
The

(
of
k
h
k
yp
1
otheses
(
B
k
1
k
;
1
2
.
;
.
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7.2
.
otheses
.
1
.
2
.
3
.

Voir icon more